KEY FORMULAS

Prem S. Mann . Introductory Statistics, Fourth Edition

CHAPTER 2 • ORGANIZING DATA

- Relative frequency of a class = $f/\Sigma f$
- Percentage of a class = (Relative frequency) × 100
- Class midpoint or mark = (Upper limit + Lower limit)/2
- · Class width = Upper boundary Lower boundary
- · Cumulative relative frequency

 $= \frac{Cumulative frequency}{Total observations in the data set}$

Cumulative percentage

= (Cumulative relative frequency) × 100

CHAPTER 3 • NUMERICAL DESCRIPTIVE MEASURES

- Mean for ungrouped data: $\mu = \sum x/N$ and $\bar{x} = \sum x/n$
- Mean for grouped data: $\mu = \sum mf/N$ and $\bar{x} = \sum mf/n$ where m is the midpoint and f is the frequency of a class
- · Median for ungrouped data

= Value of the $\left(\frac{n+1}{2}\right)$ th term in a ranked data set

- Range = Largest value Smallest value
- · Variance for ungrouped data:

$$\sigma^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{N}}{N} \quad \text{and} \quad s^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}$$

where σ^2 is the population variance and s^2 is the sample variance

· Standard deviation for ungrouped data:

$$\sigma = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{N}}{N}} \quad \text{and} \quad s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$$

where σ and s are the population and sample standard deviations, respectively

· Variance for grouped data:

$$\sigma^2 = \frac{\sum m^2 f - \frac{(\sum mf)^2}{N}}{N} \quad \text{and} \quad s^2 = \frac{\sum m^2 f - \frac{(\sum mf)^2}{n}}{n-1}$$

· Standard deviation for grouped data:

$$\sigma = \sqrt{\frac{\sum m^2 f - \frac{(\sum mf)^2}{N}}{N}} \quad \text{and} \quad s = \sqrt{\frac{\sum m^2 f - \frac{(\sum mf)^2}{n}}{n-1}}$$

· Chebyshev's theorem:

For any number k greater than 1, at least $(1 - 1/k^2)$ of the values for any distribution lie within k standard deviations of the mean.

· Empirical rule:

For a specific bell-shaped distribution, about 68% of the observations fall in the interval $(\mu - \sigma)$ to $(\mu + \sigma)$, about 95% fall in the interval $(\mu - 2\sigma)$ to $(\mu + 2\sigma)$, and about 99.7% fall in the interval $(\mu - 3\sigma)$ to $(\mu + 3\sigma)$.

- Interquartile range: IQR = Q₃ Q₁
 where Q₃ is the third quartile and Q₁ is the first quartile
- · The kth percentile:

 P_k = Value of the $\left(\frac{kn}{100}\right)$ th term in a ranked data set

Percentile rank of x_i

 $= \frac{\text{Number of values less than } x_i}{\text{Total number of values in the data set}} \times 100$

CHAPTER 4 . PROBABILITY

· Classical probability rule for a simple event:

$$P(E_i) = \frac{1}{\text{Total number of outcomes}}$$

· Classical probability rule for a compound event:

$$P(A) = \frac{\text{Number of outcomes in } A}{\text{Total number of outcomes}}$$

· Relative frequency as an approximation of probability:

$$P(A) = \frac{f}{n}$$

· Conditional probability of an event:

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$
 and $P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$

· Condition for independence of events:

$$P(A) = P(A|B)$$
 and/or $P(B) = P(B|A)$

- For complementary events: $P(A) + P(\overline{A}) = 1$
- · Multiplication rule for dependent events:

$$P(A \text{ and } B) = P(A) P(B|A)$$

· Multiplication rule for independent events:

$$P(A \text{ and } B) = P(A) P(B)$$

· Joint probability of two mutually exclusive events:

$$P(A \text{ and } B) = 0$$

· Addition rule for mutually nonexclusive events:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

· Addition rule for mutually exclusive events:

$$P(A \text{ or } B) = P(A) + P(B)$$

CHAPTER 5 • DISCRETE RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS

- Mean of a discrete random variable x: $\mu = \sum xP(x)$
- · Standard deviation of a discrete random variable x:

$$\sigma = \sqrt{\sum x^2 P(x) - \mu^2}$$

- *n* factorial: $n! = n(n-1)(n-2) \dots 3 \cdot 2 \cdot 1$
- Number of combinations of n items selected x at a time:

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

- Binomial probability formula: $P(x) = \binom{n}{x} p^x q^{n-x}$
- · Mean and standard deviation of the binomial distribution:

$$\mu = np$$
 and $\sigma = \sqrt{npq}$

- Poisson probability formula: $P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$
- Mean, variance, and standard deviation of the Poisson probability distribution:

$$\mu = \lambda$$
, $\sigma^2 = \lambda$, and $\sigma = \sqrt{\lambda}$

CHAPTER 6 • CONTINUOUS RANDOM VARIABLES AND THE NORMAL DISTRIBUTION

- z value for an x value: $z = \frac{x \mu}{\sigma}$
- Value of x when μ , σ , and z are known: $x = \mu + z\sigma$

CHAPTER 7 • SAMPLING DISTRIBUTIONS

- Mean of \bar{x} : $\mu_{\bar{x}} = \mu$
- Standard deviation of \bar{x} when $n/N \le .05$: $\sigma_{\bar{x}} = \sigma/\sqrt{n}$
- z value for \bar{x} : $z = \frac{\bar{x} \mu}{\sigma_{\bar{x}}}$
- Population proportion: p = X/N
- Sample proportion: $\hat{p} = x/n$
- Mean of \hat{p} : $\mu_{\hat{p}} = p$
- Standard deviation of \hat{p} when $n/N \le .05$: $\sigma_{\hat{p}} = \sqrt{pq/n}$
- z value for \hat{p} : $z = \frac{\hat{p} p}{\sigma_{\hat{p}}}$

CHAPTER 8 • ESTIMATION OF THE MEAN AND PROPORTION

• Margin of error for the point estimation of μ :

$$\pm 1.96 \ \sigma_{7} \ \text{or} \ \pm 1.96 \ s_{7}$$

where
$$\sigma_{\bar{x}} = \sigma/\sqrt{n}$$
 and $s_{\bar{x}} = s/\sqrt{n}$

Confidence interval for μ for a large sample:

$$\bar{x} \pm z \, \sigma_{\bar{x}}$$
 if σ is known $\bar{x} \pm z \, s_{\bar{x}}$ if σ is not known

where $\sigma_{\bar{x}} = \sigma/\sqrt{n}$ and $s_{\bar{x}} = s/\sqrt{n}$

• Confidence interval for μ for a small sample:

$$\bar{x} \pm t s_{\bar{x}}$$
 where $s_{\bar{x}} = s/\sqrt{n}$

• Margin of error for the point estimation of p:

$$\pm 1.96s_{\hat{p}}$$
 where $s_{\hat{p}} = \sqrt{\hat{p}\hat{q}/n}$

• Confidence interval for p for a large sample:

$$\hat{p} \pm z s_{\hat{p}}$$
 where $s_{\hat{p}} = \sqrt{\hat{p}\hat{q}/n}$

Maximum error of the estimate for μ:

$$E = z\sigma_{\bar{x}}$$
 or $zs_{\bar{x}}$

- Determining sample size for estimating μ : $n = z^2 \sigma^2 / E^2$
- · Maximum error of the estimate for p:

$$E = z s_{\hat{p}}$$
 where $s_{\hat{p}} = \sqrt{\hat{p}\hat{q}/n}$

• Determining sample size for estimating p: $n = z^2pq/E^2$

CHAPTER 9 • HYPOTHESIS TESTS ABOUT THE MEAN AND PROPORTION

• Test statistic z for a test of hypothesis about μ for a large sample:

$$z = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}}$$
 if σ is known, where $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$

or $z = \frac{\overline{x} - \mu}{s_{\overline{x}}}$ if σ is not known, where $s_{\overline{x}} = \frac{s}{\sqrt{n}}$

• Test statistic for a test of hypothesis about μ for a small sample:

$$t = \frac{\bar{x} - \mu}{s}$$
 where $s_{\bar{x}} = \frac{s}{\sqrt{n}}$

 Test statistic for a test of hypothesis about p for a large sample:

$$z = \frac{\hat{p} - p}{\sigma_{\hat{p}}}$$
 where $\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}}$

CHAPTER 10 • ESTIMATION AND HYPOTHESIS TESTING: TWO POPULATIONS

• Mean of the sampling distribution of $\bar{x}_1 - \bar{x}_2$:

$$\mu_{\bar{x}_1 - \bar{x}_2} = \mu_1 - \mu_2$$

 Confidence interval for μ₁ - μ₂ for two large and independent samples:

$$(\bar{x}_1 - \bar{x}_2) \pm z\sigma_{\bar{x}_1 - \bar{x}_2}$$
 if σ_1 and σ_2 are known or $(\bar{x}_1 - \bar{x}_2) \pm zs_{\bar{x}_1 - \bar{x}_2}$ if σ_1 and σ_2 are not known

where
$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 and $s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

• Test statistic for a test of hypothesis about $\mu_1-\mu_2$ for two large and independent samples:

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sigma_{\bar{x}_1 - \bar{x}_2}}$$

If σ_1 and σ_2 are not known, then replace $\sigma_{\bar{x}_1 - \bar{x}_2}$ by its point estimator $s_{\bar{x}_1 - \bar{x}_2}$.

For two small and independent samples taken from two populations with equal standard deviations:

Pooled standard deviation:

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Estimate of the standard deviation of $\bar{x}_1 - \bar{x}_2$:

$$s_{\bar{x}_1 - \bar{x}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Confidence interval for $\mu_1 - \mu_2$: $(\bar{x}_1 - \bar{x}_2) \pm ts_{\bar{x}_1 - \bar{x}_2}$

Test statistic:
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{s_{\bar{x}_1 - \bar{x}_2}}$$

 For two small and independent samples selected from two populations with unequal standard deviations:

Degrees of freedom:
$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

Estimate of the standard deviation of $\bar{x}_1 - \bar{x}_2$:

$$s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Confidence interval for $\mu_1 - \mu_2$: $(\bar{x}_1 - \bar{x}_2) \pm ts_{\bar{x}_1 - \bar{x}_2}$

Test statistic:
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{s_{\bar{x}_1 - \bar{x}_2}}$$

· For two paired or matched samples:

Sample mean for paired differences:
$$\overline{d} = \frac{\sum d}{n}$$

Sample standard deviation for paired differences:

$$s_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}}.$$

Mean and standard deviation of the sampling distribution of \overline{d} :

$$\mu_{\overline{d}} = \mu_d$$
 and $s_{\overline{d}} = \frac{s_d}{\sqrt{n}}$

Confidence interval for μ_d :

$$\overline{d} \pm t \, s_{\overline{d}}$$
 where $s_{\overline{d}} = \frac{s_d}{\sqrt{n}}$

Test statistic for a test of hypothesis about μ_d :

$$t = \frac{\overline{d} - \mu_d}{s_{\overline{d}}}$$

 For two large and independent samples, confidence interval for p₁ - p₂:

$$(\hat{p}_1 - \hat{p}_2) \pm z s_{\hat{p}_1 - \hat{p}_2}$$
here
$$s_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

. . .

For two large and independent samples, for a test of hypothesis about p₁ - p₂ with H₀: p₁ - p₂ = 0:

Pooled sample proportion:

$$\overline{p} = \frac{x_1 + x_2}{n_1 + n_2}$$
 or $\frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$

Estimate of the standard deviation of $\hat{p}_1 - \hat{p}_2$:

$$s_{\hat{p}_1-\hat{p}_2} = \sqrt{\bar{p}} \; \bar{q} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)$$

Test statistic:
$$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{s_{\hat{p}_1 - \hat{p}_2}}$$

CHAPTER 11 • CHI-SQUARE TESTS

· Expected frequency for a category for a goodness-of-fit test:

$$E = np$$

· Degrees of freedom for a goodness-of-fit test:

$$df = k - 1$$
 where k is the number of categories

 Expected frequency for a cell for an independence or homogeneity test:

$$E = \frac{\text{(Row total)(Column total)}}{n}$$

• Degrees of freedom for a test of independence or homogeneity:

$$df = (R-1)(C-1)$$

where R and C are the total number of rows and columns, respectively, in the contingency table

Test statistic for a goodness-of-fit test and a test of independence or homogeneity:

$$\chi^2 = \Sigma \frac{(O-E)^2}{E}$$

• Confidence interval for the population variance σ^2 :

$$\frac{(n-1)s^2}{\chi^2_{\omega/2}}$$
 to $\frac{(n-1)s^2}{\chi^2_{1-\omega/2}}$

Test statistic for a test of hypothesis about σ²:

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

CHAPTER 12 • ANALYSIS OF VARIANCE

Let:

k = the number of different samples (or treatments)

 n_i = the size of sample i

 T_i = the sum of the values in sample i

n = the number of values in all samples

$$= n_1 + n_2 + n_3 + \cdots$$

 Σx = the sum of the values in all samples

$$= T_1 + T_2 + T_3 + \cdots$$

 Σx^2 = the sum of the squares of values in all samples

For the F distribution:

Degrees of freedom for the numerator = k - 1Degrees of freedom for the denominator = n - k · Between-samples sum of squares:

SSB =
$$\left(\frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \frac{T_3^2}{n_3} + \cdots\right) - \frac{(\sum x)^2}{n}$$

· Within-samples sum of square

SSW =
$$\sum x^2 - \left(\frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \frac{T_3^2}{n_3} + \cdots\right)$$

• Total sum of squares: $SST = SSB + SSW = \sum x^2 - \frac{(\sum x)^2}{n}$

• Variance between samples: $MSB = \frac{SSB}{k-1}$

• Variance within samples: $MSW = \frac{SSW}{n-k}$

• Test statistic for a one-way ANOVA test: $F = \frac{\text{MSB}}{\text{MSW}}$

CHAPTER 13 • SIMPLE LINEAR REGRESSION

• Simple linear regression model: $y = A + Bx + \epsilon$

• Estimated simple linear regression model: $\hat{y} = a + bx$

· Sum of squares of xy, xx, and yy:

$$SS_{xy} = \Sigma xy - \frac{(\Sigma x)(\Sigma y)}{n}$$

$$SS_{xx} = \Sigma x^2 - \frac{(\Sigma x)^2}{n} \text{ and } SS_{yy} = \Sigma y^2 - \frac{(\Sigma y)^2}{n}$$

• Least squares estimates of A and B:

$$b = \frac{SS_{xy}}{SS}$$
 and $a = \bar{y} - b\bar{x}$

· Standard deviation of the sample errors:

$$s_e = \sqrt{\frac{SS_{yy} - b SS_{xy}}{n - 2}}$$

• Error sum of squares: SSE = $\Sigma e^2 = \Sigma (y - \hat{y})^2$

• Total sum of squares: SST = $\sum y^2 - \frac{(\sum y)^2}{n}$

• Regression sum of squares: SSR = SST - SSE

• Coefficient of determination: $r^2 = b \frac{SS_{xy}}{SS_{yy}}$

• Confidence interval for B:

$$b \pm t \, s_b$$
 where $s_b = \frac{s_e}{\sqrt{SS_{xx}}}$

• Test statistic for a test of hypothesis about B: $t = \frac{b - B}{s_b}$

• Linear correlation coefficient: $r = \frac{SS_{xy}}{\sqrt{SS_{xx} SS_{yy}}}$

• Test statistic for a test of hypothesis about ρ : $t = r\sqrt{\frac{n-2}{1-r^2}}$

Confidence interval for μ_{v|x}:

$$\hat{y} \pm t s_{\hat{y}_m}$$
 where $s_{\hat{y}_m} = s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{SS_{xx}}}$

· Prediction interval for yp:

$$\hat{y} \pm t \, s_{\hat{y}_p}$$
 where $s_{\hat{y}_p} = s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_{xx}}}$

CHAPTER 14 • NONPARAMETRIC METHODS

 Test statistic for a sign test about the population proportion for a large sample:

$$z = \frac{(X \pm .5) - \mu}{\sigma}$$
 where $\mu = np$ and $\sigma = \sqrt{npq}$

Here, use (X + .5) if $X \le n/2$ and (X - .5) if X > n/2

 Test statistic for a sign test about the median for a large sample:

$$z = \frac{(X + .5) - \mu}{\sigma}$$

where
$$\mu = np$$
, $p = .5$, and $\sigma = \sqrt{npq}$

Let X_1 be the number of plus signs and X_2 the number of minus signs in a test about the median. Then, if the test is two-tailed, either of the two values can be assigned to X; if the test is left-tailed, X = smaller of the values of X_1 and X_2 ; if the test is right-tailed, X = larger of the values of X_1 and X_2 .

 Test statistic for the Wilcoxon signed-rank test for a large sample:

$$z = \frac{T - \mu_T}{\sigma_T}$$

where
$$\mu_T = \frac{n(n+1)}{4}$$
 and $\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{24}}$

 Test statistic for the Wilcoxon rank sum test for large and independent samples:

$$z = \frac{T - \mu}{\sigma_T}$$

where $\mu_T = \frac{n_1(n_1 + n_2 + 1)}{2}$ and $\sigma_T = \sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}$

· Test statistic for the Kruskal-Wallis test:

$$H = \frac{12}{n(n+1)} \left[\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \dots + \frac{R_k^2}{n_k} \right] - 3(n+1)$$

where n_i = size of *i*th sample, $n = n_1 + n_2 + \cdots + n_k$, k = number of samples, and R_i = sum of ranks for *i*th sample

 Test statistic for the Spearman rho rank correlation coefficient test.

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$

where d_i = difference in ranks of x_i and y_i

Test statistic for the runs test for randomness for a large sample:

$$z = \frac{R - \mu_R}{\sigma_R}$$

where R is the number of runs in the sequence

$$\mu_R = \frac{2n_1n_2}{n_1 + n_2} + 1$$
 and $\sigma_R = \sqrt{\frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}$