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ABSTRACT 
This paper analyzes the signals captured during the 

movement of a mechanical manipulator carrying a liquid 
container. In order to study the signals an experimental setup 
is implemented. The system acquires data from the sensors, in 
real time, and, in a second phase, processes them through an 
analysis package. The analysis package runs off-line and 
handles the recorded data. The results show that the Fourier 
spectrum of several signals presents a fractional behavior. The 
experimental study provides useful information that can assist 
in the design of a control system to be used in reducing or 
eliminating the effect of vibrations. 
 
INTRODUCTION 

In practice the robotic manipulators present some degree 
of unwanted vibrations. In fact, the advent of lightweight arm 
manipulators, mainly in the aerospace industry, where weight 
is an important issue, leads to the problem of intense 
vibrations. On the other hand, robots interacting with the 
environment often generate impacts that propagate through the 
mechanical structure and produce also vibrations. 

Motivated by the problem of vibrations, this paper studies 
the robotic signals captured during the motion of a spherical 
container attached to the manipulator. The container carries a 
liquid and its acceleration induces motion of the content 
causing consequently a liquid vibration. The study is done in a 
fractional calculus (FC) perspective. In order to analyze the 
phenomena involved an acquisition system was developed. 
The manipulator motion produces vibrations, either from the 
structural modes or from the liquid vibration. The 
instrumentation system acquires signals from multiple sensors 
that capture the axis positions, mass accelerations, forces and 
moments and electrical currents in the motors. Afterwards, the 
analysis package, running off-line, reads the data recorded by 
the acquisition system and examines them. 

Bearing these ideas in mind, this paper is organized as 
follows. Section 2 addresses the motivation for this work. 
Section 3 describes briefly the robotic system enhanced with 
the instrumentation setup. Section 4 presents the experimental 

results. Finally, section 5 draws the main conclusions and 
points out future work. 
 
MOTIVATION 

Singer and Seering [1] mention several techniques for 
reducing vibrations and its implementation either at the robot 
manufacturing stage or at the operational stage. Briefly, the 
techniques can be enumerate as: (i) conventional 
compensation, (ii) structural damping or passive vibration 
absorption, (iii) control based on the direct measurement of 
the absolute position of the gripper, (iv) control schemes using 
the direct measurement of the modal response, (v) control 
driving, actively, energy out of the vibration modes, (vi) use a 
micromanipulator at the endpoint of the larger manipulator 
and (vii) adjustment of the manipulator command inputs so 
that vibrations are reduced or eliminated. 

In recent years the study of micro/macro robotic 
manipulators has been receiving considerable attention. In 
fact, this approach was employed in manipulators that have 
been proposed for space applications and nuclear waste 
cleanup. Several authors studied this technique, namely 
Magee, et al. [3] and Cannon, et al. [4] that adopted the 
command filtering approach in order to position the 
micromanipulator. Also, Cannon, et al. [4] and Lew, et al. [5] 
used inertial damping techniques taking advantage of a micro 
manipulator located at the end of a flexible link. Yoshikawa, 
et al. [2] used the redundancy of a flexible macro-micro 
manipulator system to generate the joint trajectories in order to 
reduce the effect of vibration at the end-effector.  

One of the applications where the vibration occurs is in 
the manipulation of liquids. Here there are two main aspects: 
the modeling and the control of the liquid dynamics. Several 
authors addressed the dynamics problem due to liquid slosh 
loads. There are several mathematical tools to describe the 
fluids. For example, Navier-Stokes equations [16] can be used 
to model the liquid dynamics. Concerning the problem of 
control the liquid vibration, it was first encountered in control 
of guided missiles in the aerospace industry. In this 
application it was found that sloshing in the fuel tanks could 
result in instabilities. Lately, movement of open containers 
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containing fluid, e.g. molten metal and various beverages, has 
been investigated. The main goal is then to move the container 
as fast as possible without too much slosh [16, 17]. 

Bearing these ideas in mind, this article studies the robotic 
signals in a FC perspective. In fact, the study of fractional 
order systems has been receiving considerable attention [6, 7, 
22–25] due to the facts that many physical systems are well 
characterized by fractional models [8]. With the success in the 
synthesis of real noninteger differentiators, the emergence of 
new electrical elements [9], and the design of fractional 
controllers [10], fractional algorithms have been applied in a 
variety of dynamical processes [11]. Therefore, the study 
presented here can assist in the design of the control system to 
be used. 
 
EXPERIMENTAL PLATFORM 

The developed experimental platform has two main parts: 
the hardware and the software components [12]. The hardware 
architecture is shown in figure 1. Essentially it is made up of a 
robot manipulator, a Personal Computer (PC) and an interface 
electronic system. The interface box is inserted between the 
robot arm and the robot controller, in order to acquire the 
internal robot signals; nevertheless, the interface captures also 
external signals, such as those arising from accelerometers and 
force/torque sensors, and controls the external micro-arm. The 
modules are made up of electronic cards specifically designed 
for this work. The function of the modules is to adapt the 
signals and to isolate galvanically the robot’s electronic 
equipment from the rest of the hardware required by the 
experiments. 
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Figure 1. Block diagram of hardware architecture 
 

The software package runs in a Pentium 4, 3.0 GHz PC 
and, from the user’s point of view, consists on two 
applications: the acquisition application and the analysis 

package. The acquisition application is a real time program for 
acquiring and recording the robot signals. The analysis 
package runs off-line and handles the recorded data. This 
program allows several signal processing algorithms such as, 
Fourier transform (FT), correlation, time synchronization, etc. 
 
EXPERIMENTAL RESULTS 

In the experiment is adopted a spherical container. Its 
physical properties are shown in Table 1. To test the behavior 
of the variables in different situations, the container can 
remains empty or its content can be a liquid or a solid. Figure 
2 depicts the robot with the container. The robot motion is 
programmed in a way that the container moves from an initial 
to a final position following a linear trajectory. The distance 
between the points is 0.6 m.  
 

 
 

Figure 2. Spherical container with liquid 
 
 

Table 1 – Physical properties of the spherical container 
 

 
During the motion of the manipulator the container is 

moved by the robot and several signals are recorded with a 
sampling frequency of fs = 500 Hz. The signals come from 
different sensors, such as accelerometers, force and torque 
sensor, position encoders and current sensors. The signals are 
captured for three different situations: (i) empty container, (ii) 
container with a solid, and (iii) container with a liquid. The 
container with the solid or the liquid have an identical mass, 
namely of 1 kg. In the experiment the used liquid is water. The 
acceleration of the container induces motion of the liquid. This 
is referred to as slosh or liquid vibration. The amount of slosh 
depends on how the container is accelerated, the geometry of 
the container and the properties of the fluid. 

In order to test different acceleration shapes two types of 
trajectory velocity are used: the trapezoidal and the parabolic 
profiles. The trapezoidal profile causes the motors to 
accelerate and decelerate quickly at the start and end of 
movement, with a constant speed along the path. The 
parabolic profile causes the motors to accelerate slowly, until 
maximum speed is reached, and then decelerate at the same 
rate. 

Characteristic Spherical container 
Mass (empty) [kg] 215 × 10−3 
Diameter [m] 203 × 10−3 
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Time Domain: 
The time evolution of the variables is shown in the figures 

3–12 corresponding to the cases: (i) empty container, (ii) 
container with a solid, and (iii) container with a liquid. 

To analyze the vibration effect of the liquid, caused by the 
container acceleration, the signals are captured during 20 s, 
although the motion of the container is executed in 
approximately 5 s. 

  
Figure 3. Electrical currents of robot axis motors for the 

trapezoidal profile 

 
Figure 4. Robot axis positions for the trapezoidal profile 

 
Figure 3 represents the electrical current of the motors for 

the trapezoidal profile. As consequence the robot joints rotate 
as shown in figure 4. The signals of axis 1 to 4 present a 
variation approximately during the first 5 s, that is the time 

duration of the trajectory. According to the defined trajectory 
the axis 5 does not rotate. 

Figures 5 and 6 show the forces and moments 
respectively in consequence of the container motion. The 
effect of the liquid vibration can be observed in the My 
moment component (figure 6).  

 
 

Figure 5. Forces at the gripper sensor for the trapezoidal 
profile 

 
 

Figure 6. Moments at the gripper sensor for the trapezoidal 
profile 

 
Figure 7. Container and terminal robot link accelerations for 

the trapezoidal profile 
 

Figure 7 shows the accelerations at the clamped end of the 
container (accelerometer 1) and at the terminal link of the 
robot (accelerometer 2). The amplitudes of the accelerometers 
signals are higher at the end of the container movement. 
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Figure 8. Electrical currents of robot axis motors for the 

parabolic profile 
 

 
Figure 9. Robot axis positions for the parabolic profile 

 
Figures 8-12 show the time evolution of the variables for 

the parabolic profile. Comparing the robot axis positions for 
the two profiles (figures 4 and 9) it can be seen that the 
dynamics of the signal positions at the start and end of 
movement are smoother for the parabolic case. This fact is 
also reflected in the electrical currents of the robot axis motors 
(figures 3 and 8). 

The smoother dynamics of the parabolic profile has the 
consequence of lower forces induced in the container. 
Therefore, the amplitude of the liquid vibration, caused by the 
movement of the container, is lower than the acceleration 

occurring in the trapezoidal case. This fact is reflected in the 
moments measured at the gripper sensor (see the zoom in 
figures 6 and 11). Also, for the trapezoidal profile the 
accelerations are higher at the end of trajectory, approximately 
at t = 5 s (see figures 7 and 12). 

 
Figure 10. Forces at the gripper sensor for the parabolic profile 

 

 
 

Figure 11. Moments at the gripper sensor for the parabolic 
profile 

 

 
 

Figure 12. Container and terminal robot link accelerations for 
the parabolic profile 

 
Fourier Transform: 

In order to examine the behavior of the signal FT a 
trendline is superimposed within the spectrum over, at least, 
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one decade. The trendline is based on a power law 
approximation [14]: 

( ){ } mctf ω≈F  (1) 

where F is the Fourier operator, +ℜ∈c  is a constant that 
depends on the amplitude, ω is the frequency and ℜ∈m  is 
the slope. 

All the signals of the trajectories referred previously were 
studied but, due to space limitations, only the most relevant 
are depicted. 

Figure 13 shows the amplitude of the Fast Fourier 
Transform (FFT) of the axis 1 position signal (case i). A 
trendline is calculated, and superimposed over the signal, with 
slope m = –0.99, that reveals, clearly, the integer order 
behavior. The position signals present identical behavior, in 
terms of its spectrum, for the others cases (ii) container with a 
solid and (iii) container with a liquid. In fact, as shown before, 
the position signals maintain the same shape for the three 
cases (see figure 4). 

Figure 14 shows the amplitude of the FFT of the axis 3 
position signal (case i and case iii). The spectrum is also 
approximated by trendlines in a frequency range larger than 
one decade. Here the trendlines present slopes that vary 
slightly (slope m = –2.54 for case i and slope m = –2.50 for 
case iii). The study of the case ii) presents a trendline with a 
slope of m = –2.62. Therefore, the lines present, clearly, 
fractional order behavior in all cases. 
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Figure 13. Spectrum of the axis 1 position for the trapezoidal 

profile 
 

The others position signals (axis 2 and 4) were studied, 
revealing also a well defined spectrum. Their trendlines 
present middle slope values that are difficult to classify in 
terms of its behavior as fractional or integer order. In what 
concerns to the axis 5 position signal, as it maintains the same 
value during all time acquisition, it consists only in a direct 
current component. 

Figure 15 shows, as an example, the FFT amplitude of the 
electrical current for the motor axis 3, that occurs in the case 
of the trapezoidal profile with container carrying a liquid (case 
iii). A trendline with slope m = −1.19 is calculated in a 
frequency range larger than one decade and superimposed to 
the signal. The others current signals were studied, revealing 
also an identical behavior in terms of its spectrum spread, for 
the tested conditions (cases i, ii and iii). 

According to the robot manufacturer specifications the 
loop control of the robot has a cycle time of tc = 10 ms. This 
fact    is     observed    approximately    at    the     fundamental 
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Figure 14. Spectrum of the axis 3 position for the trapezoidal 
profile 
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Figure 15. Spectrum of the axis 3 motor current for the 
trapezoidal profile 

 
(fc = 100 Hz) and multiple harmonics in all spectra of motor 
currents (figure 15). 

Figure 16 shows the FFT amplitude of the Fx force (case 
i) for the trapezoidal profile. A trendline with slope m = −2.52 
is calculated in a frequency range larger than one decade and 
superimposed to the signal. 

Figure 17 shows the FFT amplitude of the Fy force (cases 
i and iii) for the trapezoidal profile. Two trendlines with slopes 
m = −2.49 and m = −2.53, for the cases i) and iii), were 
calculated in a frequency range larger than one decade and 
superimposed to the signal. The slope values of the force 
components presented (figures 16 and 17) show a fractional 
order behavior. In general, the forces for the other cases not 
shown have a spectrum that can be approximated by a 
trendline in a frequency range greater then one decade. Their 
trendlines present middle slope values that are difficult to 
classify in terms of its behavior as fractional or integer order. 
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Figure 16. Spectrum of the Fx force for the trapezoidal profile 
 

Figure 18 shows the FFT amplitude of the Mz moment 
(case ii) for the trapezoidal profile. This spectrum has not 
defined a clear pattern in a large frequency range. Moreover, 
all moments spectra present identical behavior. Therefore, it is 
difficult to define accurately the behavior of signals in terms 
of integer or fractional dynamics. 
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Figure 17. Spectrum of the Fy force for the trapezoidal profile 
 
Finally, figure 19 depicts the spectrum of the signal 

captured from the accelerometer 1 located at the container. 
Like the spectrum from the other accelerometer, this spectrum 
is spread and complicated. Therefore, is difficult to define 
accurately the slope of the signal and, consequently, its 
behavior in terms of integer or fractional dynamics. 

The spectra of the signals for the trapezoidal profile were 
studied in terms of their integer versus fractional behavior. 
The spectra for the parabolic profile were also analyzed, but 

due to space limitations are not presented here. The signals in 
time domain for the parabolic profile present a smoother 
dynamics, when compared with those of the trapezoidal 
profile. Nevertheless, both cases reveal identical behavior in 
terms of integer versus fractional characteristics. 
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Figure 18. Spectrum of the Mz moment for the trapezoidal 
profile 
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Figure 19. Acceleration spectrum of the container for the 
trapezoidal profile 

 

Windowed Fourier Transform: 
Several spectra of the signals captured during 

approximately 20 seconds are represented in figures 13−19. 
For the most part of the signals their spectra are scattered and, 
therefore, in order to obtain smoother curves a multiwindow 
algorithm can be used. If we time slice the signals and 
calculate the Fourier transform, then, for each section of the 
signal, the resulting spectrum is a smoother curve. One way of 
obtaining the time-dependent frequency content of a signal is 
to take the Fourier transform of a function over an interval 
around an instant τ, where τ is a variable parameter [15]. The 
Gabor Transform accomplishes this by using the Gaussian 
window. The windowed Fourier transform (WFT), also known 
as short time Fourier transform (STFT), generalizes the Gabor 
transform by allowing a general window function [20]. The 
concept of this mathematical tool is very simple. We multiply 
the signal to be analyzed x(t), by an analysis moving window 
g(t−τ), and then we compute the Fourier transform of the 
windowed signal x(t) g(t−τ). Each FT gives a frequency 
domain ‘slice’ associated with the time value at the window 
centre. Actually, windowing the signal improves local spectral 
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estimates [20]. Considering the window function centered at 
time τ, the WFT is represented analytically by: 

∫
+∞

∞−

−−= dtetgtxF tj
w

ωτωτ )()(),(  (2) 

where ω = 2π f  is the frequency. 
Each window has a width tw and the distance between two 

consecutive windows can be defined in a way so that they 
become overlapped during a percentage of time β in relation 
with tw. Therefore, the frequencies of the analyzing signal 
f < 1/tw are rejected by the WFT. Diminishing tw produces a 
reduction of the frequency resolution and an increase in the 
time resolution. Augmenting tw has the opposite effect. 
Therefore, the choice of the WFT window entails a well-
known duration-bandwidth tradeoff. 

On the other hand, the window can introduce an unwanted 
side effect in the frequency domain. As a result of having 
abrupt truncations at the ends of the time domain caused by 
the window, specially the rectangular one, the spectrum of the 
FT will include unwanted “side lobes”. This gives rise to an 
oscillatory behavior in the FT results called the Gibbs 
Phenomenon [21]. In order to reduce this unwanted effect, 
generally is used a weighting window function that attenuate 
signals at their discontinuities. For that reason there are 
several others popular windows normally adopted in the WFT 
as, for example, Hanning, Hamming, Gaussian and Blackman 
[18]. 

If the windows do not overlap, then it is clear that some 
data are lost. On the other hand, if the windows overlap in a 
short period of time a significant part of the time signal is 
ignored due to the fact that most windows exhibit small values 
near the boundaries. To avoid this loss of data, overlap 
analysis must be performed. 

As analyzed previously for the FT, in order to study the 
behavior of each ),( ωτwF , a trendline with slope mi is now 
superimposed over the spectrum during, at least, one decade. 
Having these ideas in mind is possible to relate the slope m, of 
the FT’s trendline, with the set of slope mi of the WFT’s 
trendlines. In fact the slope m of the trendline superimposed 
over the FT can be seen heuristically as a weighted average of 
the slopes mi of the WFT trendlines obtained for the n 
windows: 

∑∑
==

n

i
i

n

i
iiav amam

11

~  (3) 

where the weight ai is the signal’s energy for each ith WFT 
window (i = 1,..., n).  

The practice reveals that this heuristic formula is suitable 
when the trendline fits well in the numerical data. 

In this line of thought, the spectra of the signals 
approximated by trendlines, are analyzed with the WFT. Due 
to space limitations we are only depicting the more relevant 
features. In the study presented a Gaussian window was 
adopted according to the expression: 

2

2/2
1

)(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= wt
t

etg
α

 
(4) 

where the parameter α = 2.5 and tw is the width of the window. 
The value for the Gaussian window overlap is β = 50% 

and the window’s width is tw = 2 s. The standard trial and error 
procedure was used to find the suitable windows overlap. 

Figure 20 a) depicts the axis 3 motor current for the 
trapezoidal profile (case iii). Figure 20 b) shows  its  spectrum 
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c) 

Figure 20. WFT of the axis 3 motor current for the trapezoidal 
profile 

 
along the time obtained with the WFT. According with the 
approach used before, a trendline was calculated between 
frequencies 1 < f < 250 Hz for the spectrum obtained with 
each moving window. The set of resulting trendlines are 
shown on figure 20 c). The trendlines for the windows 
centered approximately at time τ = 0 s and τ = 20 s (dashed 
lines) present a distinct behavior as a result of the signal 
having abrupt truncations at the ends of the time. This fact can 
be partial observed also in figure 20 b). Here the spectrum 
presents a considerable energy for frequencies 1 < f < 100 Hz 
at τ = 20 s due to the discontinuities of the signal in time. In 
consequence we do not consider those trendlines in our study. 
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c) 

Figure 21. WFT of the Fy force for the trapezoidal profile 
case i) 

 
The slope values of the solid trendlines shown in figure 20 c) 
varies between −1.49 < m < −0.97. Using (3) the equivalent 
slope value obtained is mav = −1.16, which is close to the 
trendline slope value m = −1.19 of the FT calculated over de 
same range of frequencies 1 < f < 250 Hz (figure 15). 
Figure 21 presents a set of signals related with the WFT of the 
Fy force for the trapezoidal profile case i). The slope values of 
the solid trendlines shown in figure 21 c) varies between 
−2.68 < m < −0.80. Using the heuristic expression (3) the 
obtained equivalent slope is mav = −2.47, which value is again 
close to the slope value m = −2.49 of the FT trendline 
superimposed over de same range of frequencies 
20 < f < 250 Hz (figure 17 case i). 
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Figure 22. WFT of the Fy force for the trapezoidal profile 
case iii) 

 
Finally, figure 22 depicts a set of signals related with the 

WFT of the Fy force for the trapezoidal profile case iii). The 
oscillation of the signal in time domain (figure 22 a) reveals 
the effect of the liquid slosh during the acquisition time of 
20 s. This fact is observed in figure 22 b) where the energy of 
the spectrum, for approximately 1 < f < 2.5 Hz, reveals a 
significant value. The solid trendlines shown in figure 22 c) 
varies between −2.74 < m < −0.80. Using (3) the equivalent 
slope value obtained is mav = −2.45. Again this value is close 
to the slope value m = −2.53 of the FT trendline superimposed 
over de same range of frequencies (figure 17 case iii). 
 
CONCLUSIONS 

In this paper an experimental study was conducted to 
investigate several robot signals during the motion of a liquid 
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container. The amount of slosh depends, among other aspects, 
on how the container is accelerated. In order to test different 
acceleration shapes two types of trajectory velocity were used: 
the trapezoidal and the parabolic profiles. Although the signals 
in time domain present different dynamics for the two profiles, 
their spectra reveals identical behavior in terms of integer 
versus fractional characteristics. The study was conducted in a 
fractional system perspective and provides useful information 
that can assist in the design of a control system to be used in 
reducing or eliminating the effect of vibrations. 

In future work, we plan to pursue several research 
directions to help us further understand the behavior of the 
signals. 

REFERENCES 
[1] Singer, N. C. and W. P. Seering. Using Acausal Shaping 

Techniques to Reduce Robot Vibration. Proc. IEEE Int. 
Conf. on Robotics and Automation. Philadelphia PA., 
April 25-29, 1988. 

[2] Yoshikawa, T., K. Hosoda, T. Doi and H. Murakami. 
Quasi-static Trajectory Tracking Control of Flexible 
Manipulator by Macro-micro Manipulator System, Proc. 
IEEE Int. Conf. on Robotics and Automation, pp. 210-
215, 1993. 

[3] Magee, David P. and Wayne J. Book. Filtering Micro-
Manipulator Wrist Commands to Prevent Flexible Base 
Motion. Proc. American Control Conf., Seatle, 
Washington, June, 1995. 

[4] Cannon, David W., David P. Magee and Wayne J. Book, 
Jae Y. Lew. Experimental Study on Micro/Macro 
Manipulator Vibration Control. Proc. IEEE Int. Conf. on 
Robotics and Automation. Minneapolis, Minnesota, 
April, 1996. 

[5] Lew, J.Y., Trudnowski, D. J., Evans, M. S., and Bennett, 
D. W. Micro-Manipulator Motion Control to Suppress 
Macro-Manipulator Structural Vibrations. Proc. IEEE 
Int. Conf. on Robotics and Automation, Vol. 3, pp. 3116-
3120, 1995. 

[6] Machado, J. A. Tenreiro. Analysis and Design of 
Fractional-Order Digital Control Systems, Journal 
Systems Analysis-Modelling-Simulation, Gordon & 
Breach Science Publishers, vol. 27, pp. 107-122, 1997. 

[7] Machado, J. A. Tenreiro. A Probabilistic Interpretation 
of the Fractional-Order Differentiation, Journal of 
Fractional Calculus & Applied Analysis, vol. 6, No 1, 
pp. 73-80, 2003. 

[8] Podlubny, I. Geometrical and physical interpretation of 
fractional integration and fractional differentiation. 
Journal of Fractional Calculus & Applied Analysis, vol. 
5, No 4, pp. 357-366, 2002. 

[9] Bohannan, Gary W. Analog Realization of a Fractional 
Control Element -Revisited mechatronics.ece.usu.edu/ 
foc/cdc02tw/cdrom/aditional/FOC_Proposal_Bohannan.
pdf, 2002. 

[10] Barbosa, Ramiro S., J. A. Tenreiro Machado and Isabel 
M Ferreira. Tuning of PID Controllers Based on Bode’s 
Ideal Transfer Function, Nonlinear Dynamics 38: pp. 
305–321, Kluwer Academic Publishers, 2004. 

[11] Oustaloup, Alain, Xavier Moreau and Michel Nouillant. 
From fractal robustness to non integer approach in 
vibration insulation: the CRONE suspension, 

Proceedings of the 36th Conference on Decision & 
Control, San Diego, California, USA, December, 1997. 

[12] Lima, Miguel F. M., J.A. Tenreiro Machado, and Manuel 
Crisóstomo. Experimental Set-Up for Vibration and 
Impact Analysis in Robotics, WSEAS Trans. on 
Systems, Issue 5, vol. 4, May, pp. 569-576, 2005. 

[13] Lima, Miguel F. M., J.A. Tenreiro Machado, and Manuel 
Crisóstomo. Fractional Order Fourier Spectra In Robotic 
Manipulators With Vibrations, Second IFAC Workshop 
on Fractional Differentiation and its Applications, Porto, 
Portugal. 2006. 

[14] Lima, Miguel F. M., J.A. Tenreiro Machado, and Manuel 
Crisóstomo. Windowed Fourier transform of 
experimental robotic signals with fractional behavior. In 
Proc. IEEE Int. Conf. on Computational Cybernetics, 
pages 21-26, Tallin, Estonia, August, 2006. 

[15] D. Gabor. Theory of communication. J. IEE 1946. 
[16] Grundelius, M.. Methods for Control of Liquid Slosh. 

PhD thesis, Lund Institute of Technology, Sweden, 
October 2001. 

[17] Feddema, J.T., C.R. Dohrmann, G.G. Parker, R.D. 
Robinett, V.J. Romero, and D.J. Schmitt. Control for 
slosh-free motion of an open container. IEEE Control 
Systems, 17(1):29–36, February 1997. 

[18] Harris, Fredric J., On the Use of Windows for Harmonic 
Analysis with the Discrete Fourier Transform. Proc. 
IEEE, vol. 66, n. 1, January 1978. 

[19] Lima, Miguel F. M., J.A. Tenreiro Machado, and Manuel 
Crisóstomo. Fractional Dynamics in Mechanical 
Manipulation, Accepted for the ASME 2007 Int. Design 
Engineering Technical Conf. & Computers and 
Information in Engineering Conf., September 4-7, 2007, 
Las Vegas, Nevada, USA. 

[20] Ronald L. Allen, Duncan W. Mills, Signal Analysis, 
IEEE Press, Wiley-Interscience, 2004. 

[21] Alan V. Oppenheim, Ronald W. Schafer, John R. Buck, 
Discrete-Time Signal Processing, 2nd Edition, Prentice 
Hall, 1989. 

[22] Vasily E. Tarasov and George M. Zaslavsky, Fractional 
dynamics of systems with long-range interaction, 
Communications in Nonlinear Science and Numerical 
Simulation, Volume 11, Issue 8, December 2006, Pages 
885-898. 

[23] Nickolay Korabel, George M. Zaslavsky and Vasily E. 
Tarasov, Coupled oscillators with power-law interaction 
and their fractional dynamics analogues, 
Communications in Nonlinear Science and Numerical 
Simulation, Volume 12, Issue 8, December 2007, Pages 
1405-1417. 

[24] Vasily E. Tarasov and George M. Zaslavsky, 
Conservation laws and Hamilton's equations for systems 
with long-range interaction and memory, 
Communications in Nonlinear Science and Numerical 
Simulation, In Press, Corrected Proof, Available online 
24 May 2007, doi:10.1016/j.cnsns.2007.05.017. 

[25] Maria da Graça Marcos, Fernando B.M. Duarte and J.A. 
Tenreiro Machado, Fractional dynamics in the trajectory 
control of redundant manipulators Communications in 
Nonlinear Science and Numerical Simulation, In Press, 
Corrected Proof, Available online 16 April 2007, 
doi:10.1016/j.cnsns.2007.03.027. 


	capas.pdf
	Digitalizar1.pdf
	Digitalizar3.pdf

	Lima-JCND-07-1079.pdf

