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In the last two decades, fractional (or non integer) differentiation
has played a very important role in various fields such as mechanics,
electricity, chemistry, biology, economics, control theory and signal,
and image processing. For example, in the last three fields, some
important considerations such as modelling, curve fitting, filtering,
pattern recognition, edge detection, identification, stability, controlla-
bility, observability and robustness are now linked to long-range
dependence phenomena. Similar progress has been made in other
fields listed here.
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A fractional order system is a system described by an integro-diffe-
rential equation involving fractional order derivatives of its input(s)
and/or output(s). From a physical point of view, linear fractional deri-
vatives and integrals order systems are not guite conventional linear
systems, and not quite conventional distributed parameter systems.
They are in fact halfway between these two classes of systems, and are
particularly suited for diffusion phenomena modelling. They also have
been a modelling tool well suited to a wide class of phenomena with
non-standard dynamic behaviour.
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ABSTRACT. This paper analyses the relationship between the signal delay and the fractional
dynamics. It is shown that some experimental signals spectra are approximated by trendlines.
Based on the slope of these trendlines the fractional or integer order behavior is determined,
For the pseudo phase plane reconstruction of each signal, the time delays are calculated
through the fractal dimension, as an alternative to the mutual information that is often used.
The slopes of the trendlines spectra reveal a relationship with the fractal dimension of the
pseudo phase plane and the corresponding time lag.

RESUME. Cet article analyse le rapport entre le retard de signal et la dynamique fractionnaire.
Le spectre de quelques signaux robotiques est approximé par des lignes de tendance. De
Uinclinaison de ces lignes, on considére son comportement comme d’ordre [fractionnaire ou
d’ordre entier. Pour la reconstruction du pseudo-plan de phase de chaque signal, les retards
de temps sont calculés par la dimension fractale au lieu du calcul plus usuel par
information mutuelle. Les inclinaisons des lignes de tendance du spectre montrent un
rapport avec la dimension fractale du pseudo-plan de phase et du retard correspondant.

KEYWORDS: pseudo-phase plane, fractional calculus, mutual information, fractal dimension,
robotics.

MOTS-CLES : pseudo-plan de phase, calcul fractionnaire, information mutuelle, dimension
Jfractale, robotique.

DOI:10.3166/JESA.42.1037-1051 © 2008 Lavoisier, Paris

RS - JESA —42/2008. Fractional order systems, pages 1037 to 1051



1038 RS - JESA —42/2008. Fractional order systems

1. Introduction

The study of fractional order systems received considerable attention recently
(Machado, 2003), due to the facts that many physical systems are well characterized
by fractional models (Podlubny, 2002). With the success in the synthesis of real
noninteger differentiators, the emergence of new electrical elements (Bohannan,
2002), and the design of fractional controllers (Sabatier et al., 1998; Melchior ef al.,
2000; Machado, 1997; Barbosa et al., 2004), fractional calculus (FC) have been
applied in a variety of dynamical processes (Oustaloup et al., 1997; Vinagre et al.,
2002). The importance of fractional order mathematical models is that it can be used
to make a more accurate description and to give a deeper insight into the physical
processes underlying long range memory behaviors. On previous works (Lima et al.,
2006; Lima et al., 2007) it was demonstrated that some robotic signals have a
fractional behavior and constitute a good test-bed for the study of these phenomena.

A delay differential equation (DDE) (Driver, 1977; Faybishenko, 2004; Deng et
al., 2007) is a description where the evolution of a system at a certain time ¢,
depends on the state of the system at an earlier time +T. On the other hand, the FC
incorporates a memory-time property because it captures the dynamic phenomena
involved during all the time-history of a system (Le Méhauté et al, 1991;
Nigmatullin, 2006). Consequently, it seems to exist some kind of relationship
between the FC and the integer models with delays, since both are based in memory
aspects. This work is a first step towards the analysis of the hypothetical relationship
between the DDE and the FC.

The pseudo phase space (PPS) is used to analyze signals with nonlinear
behavior. For the two-dimensional case it is called pseudo phase plane (PPP) (Feeny
et al., 2004; Abarbanel et al., 1993; Trendafilova et al., 2001). To reconstruct the
PPS it is necessary to find the adequate time lag between the signal and one delayed
image of the original signal. To determine the proper time delay often the mutual
information concept is used. Nevertheless, in some cases the mutual information
reveals a behavior where it becomes difficult to find the adequate time delay.
Alternatively, a method based on the fractal dimension to determine the proper delay
is proposed in this paper. Some recent research addressed the relationship between
fractal dimensions and fractional models (Novikov ef al., 2000; Koga et al., 2004)
but, both theoretical and experimental evidences are still to be explored further.

Bearing these ideas in mind, this paper is organized as follows. Section 2
describes the robotic system used to captured the signals. Sections 3 and 4 present
some fundamental concepts, and the experimental results, respectively. Finally,
Section 5 draws the main conclusions and points out future work.
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2. Experimental platform

In order to analyze signals that occur in a robotic manipulator an experimental
platform was developed. Due to the multiplicity of sensors, the data can be
redundant because the information flows through all system. Therefore, the aim of
the research work is to study the sensor signals in a redundancy perspective, and
their dependence on the system dynamics.

The experimental platform has two main parts: the hardware and the software
components (Lima et al., 2005). The hardware architecture is shown in Figure 1.
Essentially it is made up of a mechanical manipulator, a PC and an interface
electronic system. The interface box is inserted between the arm and the robot
controller, in order to acquire the internal robot signals; nevertheless, the interface
captures also external signals, such as those arising from accelerometers and
force/torque sensors. The modules are made up of electronic cards specifically
designed for this work. The function of the modules is to adapt the signals and to
isolate galvanically the robot’s electronic equipment from the rest of the hardware
required by the experiments.
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Figure 1. Block diagram of the hardware architecture

The software package runs in a Pentium 4, 3.0 GHz PC and, from the user’s
point of view, consists of two applications: (i) the acquisition application is a real
time program responsible for acquiring and recording the robot signals; (if) the
analysis package runs off-line and handles the recorded data. This program allows
several signal processing algorithms such as, Fourier transform (FT), Windowed FT,
correlation, time synchronization, etc.

A spherical container carrying a liquid is adopted to test the load dynamics. To
analyze the behavior of the variables in different situations, the container (Figure 2)
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can remain empty or can be filled with a liquid or a solid. The corresponding
physical properties are shown in Table 1. The robot motion is programmed in a way
that the container moves from an initial to a final position following a linear
trajectory. The signals from different sensors, such as accelerometers, force and
torque sensor, position encoders and current sensors are recorded with a sampling
period of £, =2 x 107 s during a total time of 7= 20 s.

Figure 2. Spherical container with liquid

Table 1. Physical properties of the spherical container

Characteristic Spherical container
Mass (empty) [kg] 215 %107
Diameter [m] 203 x 107

3. Main concepts

In this section is presented a review of fundamental concepts involved in the
experiments. The technique used to determine the fractional behavior of several
robotic signals is based on the slope of their spectra trendlines. Additionally, the
pseudo phase space is obtained using the method of the time delays.

3.1. Spectrum trendlines

In order to examine the behavior of the signal FT a trendline is superimposed
over the signal spectrum in, at least, one decade. The trendline is based on a power
law approximation (Lima et al., 2006):

IF{r )} =co™ [1]

where F is the Fourier operator, @ is the frequency, ce R*is a constant that
depends on the signal amplitude, and me R is the slope. According to the value of
m the signals can exhibit an integer or fractional order behavior.
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We must mention that not all signals are possible to approximate through
expression [1]. In fact, some signals present a scattered spectrum, being difficult to
characterize using a simple analytical expression (Lima et al., 2007). Therefore,
model [1] is adopted for the signals following approximately that behavior, because
it leads to a simple method of comparison.

3.2. Pseudo phase plane and its reconstruction

In the experimental study of the dynamical phenomena usually is not possible to
sense all the states in a system. The PPS reconstruction mitigates this lack of
information about the system. The goal of the PPS reconstruction is to view the
signal in a higher dimensional space taking a sample measurement of its history. In
order to achieve the phase space the proper time lag T for the delay measurements
and the adequate dimension d € N of the space must be determined. In the PPP the
measurement s(¢) forms the pseudo vector y(f) according to:

(@) =[s(0), 5t + Ty),...,s(t +(d = 1)T,)] (2]

The vector y(#) can be plotted in a d-dimensional space forming a curve in the
PPS. There is a one-to-one relationship between the data in the PPS and the
associated data in the true state space. If d=2 we have a two-dimensional time
delay space. Therefore, the plot of PPP will not change substantially, since the signal
{s(9), s(¢+T,)} is related with the model {s(#), $(¢)}. In resume, we expect the PPP

to preserve the major properties of the state space representation, and thus to allow
us to draw conclusions about the system dynamics.

The procedure of choosing a sufficiently large d is formally known as
embedding, and any dimension that works is called an embedding dimension df. The
number of measurements dg should provide a phase space dimension, in which the
geometrical structure of the plotted PPS is completely unfold, and where there are
no hidden points in the resulting plot.

3.3. Determining the time delays

If we choose T too small, then the time series s(¢) and s(¢+T) will be so close to
each other (in numerical value) that we cannot distinguish them. From a practical
point of view they have not provided us with two independent coordinates.
Similarly, if T, is too large, then s(¢) and s(¢+7) are completely independent of each
other (in a statistical sense) and the resulting time series present totally unrelated
directions.

Among others (Feeny et al., 2004), the method of delays is the most common
method for reconstructing the phase space. Several techniques have been proposed
to choose an appropriate time delay (Abarbanel et al., 1993; Choi et al., 1996). One
line of thought is to choose T, based on the correlation R of the time series with its
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delayed image. The correlation provides a measurement of the similarity between
two time series that leads to good results when the series have a linear relationship.
When R is minimal it indicates that the delay 7; will lead to the independency of the
series s(2) and s(¢+7,). The difficulty of correlation to deal with nonlinear relations
leads to the use of the mutual information. This concept from the information theory
(Spataru, 1970) recognizes the non-linear properties of the series and measures their
dependence. The mutual information for the two series of variables ¢ and t+7 is
given by:

Fii{s(®),s(t+T,)}
B {s@)}F{st+1,)}
where F{s(f), s(t+T,)} is as a bidimensional probability density function and

Fy{s(0)}, F3{s(t+T,)} are the marginal probability distributions of the two series s(f)
and s(++7,), respectively.

(3]

I(t,ti'Ik):z h)gz

The average mutual information between the two time series is given by:

Fiis(t),s(t+T,)}
P AT A

In(tt+T5)= [ [ Fils@,s0+T,)}log,

£ e+Ty,

The index I,, allows us to obtain the time lag required to construct the pseudo
phase space. To find the best value T, of the delay, I,, is computed for a range of
delays and the first minimum is chosen (widely referred in the literature thought not
clearly). This procedure leads to the selection of the delay T, corresponding to two
time series that have a minimal mutual information, and, hence, to an optimal
independence without excessively large delays. Usually I, is referred (Feeny et al.,
2004; Abarbanel et al., 1993; Trendafilova et al., 2001) as the preferred altemative
to select the proper time delay 7. Nevertheless, practice reveals that in some cases
is difficult to find the first minimum of I,, due to a noise or, even, because it does
not exist. On other hand, the mutual information depends on the number of bins
(classes) C adopted to calculate the probability density function Fi{s(f), s(t+T,)}.
Due to those issues an alternative is proposed to select the best delay T based on the
fractal dimension of the PPP.

The fractal dimension is defined as:

LG (5]
£-0 In(1/¢)

where N(g) represents the minimal number of covering cells (e. g., boxes) of size ¢
required to cover a set S. The slope on a plot of In[N(e)] versus In(1/¢) provides an
estimate of the fractal dimension.

The tests developed in this article prove that the fractal dimension of the PPP
(dimppp) versus the time delay has a maximum corresponding to an adequate value
for the chart construction. It should be mentioned that no theoretical proof is
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provided. The relation between fractal dimension and time delay is only deduced
from practical experiments. The same perspective motivates the links between
fractal dimension and fractional order, and between fractional dynamics and long
memory behavior.

4. Results

According to the platform described in Section 2 we adopt an experiment related
with the internal movement of the liquid container. Several signals are captured in
this experiment and the fractional behavior versus the PPP reconstruction is
analyzed.
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Figure 3. The amplitude of the FFT for the experiment with a liquid container:
a) electrical current of robot axis 5 (container filled with a liquid); b) electrical
current of robot axis 3 (empty container); c) axis 1 position (empty container);
d) acceleration at the clamped end of the container (container filled with a liquid)

Figure 3a shows the amplitude of the FFT of the electrical current of robot axis 5
for the container filled with a liquid. A trendline is calculated and is superimposed
over the signal in a frequency range larger than one decade (3 <f'< 90 Hz). Its slope
yields m = — 0.96, revealing, clearly, the integer order behavior. Figure 3b shows the
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amplitude of the FFT of the electrical current of robot axis 3 for the empty container
case. Again a trendline is calculated, and is superimposed over the signal in the same
frequency range. Its slope yields m = — 1.53, typical of a fractional order behavior.
According to the manufacturer specifications the loop control of the robot has a
cycle time of =10 ms. This fact is observed approximately at the fundamental
(f. = 100 Hz) and multiple harmonics in all spectra of motor currents.

Figure 3c shows the amplitude of the FFT axis 1 position signal (empty
container). A trend line is calculated and is superimposed over the spectrum, with
slope m =—0.99, that is a integer order behavior. Figure 3d shows the amplitude of
the FFT of the acceleration of the container filled with a liquid. This spectrum is not
so well defined in a large frequency range. All acceleration and the force/moments
spectra present identical behavior. Therefore, it is difficult to define accurately the
behavior of those signals in terms of integer or fractional system.

In resume, the electrical currents of the axis motors and the position axis seem to
be well defined and constitute good candidates for being approximated through
trendlines.
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Figure 4. The index I,, of the electrical current of robot axis 2 for the experiment
with the liquid container empty: a) 1,, vs time lag for C = 10; b) I, vs time lag and
number of classes C

Figure 4a depicts ,, of the electrical current of robot axis 2 for the experiment
with the liquid container empty, when the number of classes is C = 10, revealing
considerable discontinuities. As referred previously, the average mutual information
1,, depends on the value of C adopted to calculate F\ {s(¢),5(++T,;)}. This fact can be
seen in Figure 4b). The time lag T, (one sample corresponds to 2 x 10~ s) and the
number of classes C vary in the ranges 0<T,;<3000 and 10< C <500,
respectively. If C is too small I,, presents some discontinuities. Nevertheless, the
larger the C the greater the processing time. For a given time lag Tj, I,, presents a
monotonic curve when C varies. Bearing these ideas in mind, it was adopted
C =100 because it represents a useful compromise in terms of processing time.
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Figure 5 depicts 1,, of the electrical current of robot axis 2 for the experiment
with the liquid container empty and C = 100, revealing an oscillatory behavior (see
the zoom in Figure 5a). It was verified that I,, always presents a certain degree of
noise/oscillation and that its amplitude, in general, is smaller when compared with
the one of Figure 4a. Consequently, in order to use I,, an algorithm must be
envisaged for smoothing the curve. Figure 5b depicts a smooth version of I,, when a
minimum Jeast squares algorithm is used, but it is not obvious the choice of the
adequate minimum because several local minima occur. Due to these issues an
alternative is proposed to select the best delay T, based on the dimppp.
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Figure 5. The index I, vs time lag of the electrical current of robot axis 2 for the
experiment with the liquid container empty for C = 100: a) original; b) smoothed version

Figure 6a depicts I,, (smoothed version) of the electrical current of robot axis 3
for the experiment with the liquid container empty when C=100. The first local
minimum occurs for time lag T, = 150 (0.3 s). In brackets is shown the delay in
seconds corresponding to the 150 consecutive positions of the time series captured
with a sampling frequency of f; = 500 Hz. The second evident local minimum
occurs for time lag T, = 525 (1.05 s). As referred before, in some cases, it is not
obvious the choice of the adequate minimum. Figure 6b depicts dimppp versus the
time lag for the same robotic signal. The step adopted for the time lag was 25
(0.05 s) because it represents a useful compromise between the processing time and
the resolution. The index dimppp presents a first local maximum for ;= 150 (0.3 s),
and a global maximum for T, = 525 (1.05 s). Figures 6c, 6d depict the PPP for two
different time lags of the electrical current of robot axis 3 for the experiment with
the liquid container empty. Several experiments revealed that the adequate PPP is
the one corresponding to Figure 6d because it is the most unfolded one. Figures 6e,
6f represent the corresponding 3-dimensional PPS where is visible that the unfolded
parts of the PPP remains unfolded. Identical behaviors have the folded parts.
Therefore, it seems reasonable to use the fractal dimension of the PPP to gather
properties of the PPS.
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Figure 6. Indexes of the electrical current of robot axis 3 for the experiment with the
liquid container empty: a) smoothed version of I, vs time lag; b) dimppp vs time lag;
¢) PPP for T; = 150 samples (0.3s); d) PPP for Ty = 525 samples (1.05s); e) 3D
PPS for T; = 150 samples; f) 3D PPS for T; = 525 samples

Figure 7 shows the amplitude of the FFT of the electrical current of robot axis 3
for the case of having the container filled with a liquid. It is clear that model [1]
yields a simple, but good, approximation. Therefore, a trendline is calculated and
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superimposed over the signal in a frequency range larger than one decade
(3 <f<90 Hz). Its slope m =— 1.48 corresponds to a fractional order behavior.

1%¢o)

Figure 7. The amplitude of the FFT for the electrical current of robot axis 3
(container filled with a liquid)

Figure 8a depicts Z,, (smoothed version) of the electrical current of robot axis 3
for the experiment with the container filled with a liquid when C = 100. The first
local minimum occurs for time lag 7, = 300 (0.6 s), approximately. The
corresponding index dimppp (Figure 8b) presents a global maximum at
(T, dimppp) = (400, 1.39), although at (T dimppp) = (300, 1.389) the value of
dimppp is almost identical. Figures 8¢c—d) depict the PPP for these two different time
lags. Practical evaluation reveals that the most adequate PPP is the one
corresponding to Figure 8d because it is more unfolded. We can see this feature on
{s(t), s(t+To)} = {4, -1}.

Figure 9a shows the amplitude of the FFT of the electrical current of robot axis 3
for the container filled with a solid. A trendline is calculated and superimposed over
the signal in a frequency range larger than one decade (3 <f< 90 Hz). Its slope is
m=—1.48. Figure 9b depicts I,, (smoothed version). The first local minimum
occurs for time lag T, = 300 (0.6 s), approximately. The corresponding dimppp
(Figure 9¢) presents a global maximum for T, = 300. Figure 9d depicts the PPP.

The tests developed for others signals prove that the index dimppp is more
sensitive comparing with I,,. Additionally, the chart of dimppp versus the time lag
has a maximum corresponding to an adequate delay 7. In resume, the index dimppp
reveals to be more assertive than /,,, and to be an appropriate index for the time lag
determination.

The PPP charts shown previously have a kind of “clouds” particularly at the
corners. These clouds can hide superimposed curves. To unfold the curves we must
find the proper embedding dimension. A key property of the embedding is that the
mapping from the real space to the pseudo space is one-to-one. If trajectories cross
each other in the PPP, then it is not an embedding (Feeny et al., 2004). A deeper
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insight into the nature of this feature must be envisaged to understand the behavior
of the PPP.
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Figure 8. Indexes of the electrical current of robot axis 3 for the experiment with the
container filled with a liquid: a) smoothed version of I,, vs time lag; b) dimppp vs
time lag; ¢) PPP for Ty = 300 samples (0.6 s); d) PPP for T; = 400 samples (0.8 s)

After analyzing, individually, the behavior of some electrical currents, we will
explore some relationship between the variables. Figure 10 depicts the trendline
slopes versus dimppp and T, for the electrical current of all robot axis motors for the
three cases of the container: empty, filled with a solid and filled with a liquid. Those
fifteen points form the surfaces shown in figure 10 and the relationship between the
three variables.

We verify the existence of a smooth curve linking the trendline slopes versus
dimppp and T, Therefore, it seems that a relationship exists between the three
variables. However, the establishment of an explicit analytical correlation is still to
be investigated.
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and time lag for the three cases of the container: empty, filled with a solid and filled
with a liquid
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5. Conclusions

The spectrum of several robotic signals was approximated by trendlines. Based
on the slope of the trendlines the fractional or integer order behavior was
determined. For the PPP reconstruction for each signal we need the respective time
lag. A new approach was proposed based on the fractal dimension. According to the
tests the fractal dimension revealed to be an appropriate index leading to good
results.

After analyzing individually the behavior of the electrical motor currents of a
robotic system, was plotted the trendline slopes versus dimppp and the time lagged,
for the three cases, namely container empty, filled with a solid and filled with a
liquid. The plots show that all the points are located in a locus that demonstrate a
relationship between the variables.
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