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Power system constraints

• Random external factors
- Weather

- Human activities

- Animals

-Vegetation

• Increasing share of non-linear loads

• Increasing demand for high PQ
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Main PQ problems
• Voltage sags
• Micro-interruptions
• Long interruptions
• Voltage spikes
• Voltage swells
• Voltage fluctuations
• Voltage unbalance
• Noise
• Harmonic distortion
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Voltage Sags

Causes:
• Faults on the transmission or distribution 
network.
• Faults in consumer’s installation.
• Connection of heavy loads and start-up of 
large motors.

Consequences:
• Malfunction of  microprocessor-based 
control systems (PCs, PLCs, ASDs, etc) 
that may lead to a process stoppage.
• Tripping of contactors and 
electromechanical relays.
•Disconnection and loss of efficiency in 
electric rotating machines.

A decrease of the normal voltage level between 10 and 90% of the nominal 
rms voltage at the power frequency, for durations of 0,5 cycle to 1 minute.
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Micro-Interruptions

Causes:
• Opening and automatic reclosure of protection devices.
• Insulation failure, lightning and insulator flashover.

Consequences:
•Tripping of protection devices.
• Loss of information and malfunction of data processing equipment.
• Stoppage of sensitive equipment (such as ASDs, PCs, PLCs).

Total interruption of electrical supply for duration from few milliseconds 
to one or two seconds.
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Long Interruptions

Causes:
• Equipment failure in the power system network.
• Storms and objects (trees, cars, etc) striking lines or poles, fire.
• Human error, bad coordination or failure of protection devices.

Consequences:
• Stoppage of all equipment.

Total interruption of electrical supply for duration greater than 1 to 2 
seconds.
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Voltage Spikes
Very fast variation of the voltage value for durations from a several 
microseconds to few milliseconds.

Causes:

• Lightning.

• Switching of lines or power 
factor correction capacitors.

• Disconnection of heavy loads.

Consequences:

• Destruction of components 
and of insulation materials.

• Data processing errors or data 
loss.

• Electromagnetic interference.
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Voltage Swells
Momentary increase of the voltage, at the power frequency, outside the normal 
tolerances, with duration of more than one cycle and typically less than a few 
seconds.

Causes:

• Start/stop of heavy loads.

• Poorly dimensioned power sources.

• Poorly regulated transformers.

Consequences:

• Flickering of lighting and screens.

• Damage or stoppage or damage of 
sensitive equipment.
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Voltage fluctuation

Causes:

•Arc furnaces.

• Frequent start/stop of electric 
motors (for instance elevators).

• Oscillating loads.

Consequences:

• Most consequences are common 
to undervoltages.

• Flickering of lighting and 
screens.

Oscillation of voltage value, amplitude modulated by a signal with low 
frequency.
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Voltage Unbalance
A voltage variation in a three-phase system in which the three voltage magnitudes 
or the phase-angle differences between them are not equal.

Causes:

•Large single-phase loads 
(induction furnaces, traction loads).

• Incorrect distribution of loads by 
the three phases of the system.

Consequences:

• The most affected loads are three-
phase induction machines.

• Increase in the losses.
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Noise
Superimposing of high frequency signals on the waveform of the power-system 

frequency.

Causes:

• Electromagnetic interferences.

• Improper grounding may also be 
a cause.

Consequences:

• Disturbances on sensitive 
electronic equipment.

• May cause data loss and data 
processing errors.
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Voltage or current waveforms assume non-sinusoidal shape.

The waveform corresponds to the sum of different sine-waves with different 
magnitude and phase, having frequencies that are multiples of power-system 
frequency.

Harmonic Distortion
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Harmonic Distortion

Switched mode power supply

Fluorescent lighting

Sources of harmonic distortion (1)
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Harmonic Distortion

3-phase rectifier

Adjustable speed drive

Sources of harmonic distortion (2)
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Harmonic Distortion
Consequences of harmonic distortion (1)

• Conductor overheating (skin effect end proximity effect)

• Neutral overloading (triplen harmonics)
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Harmonic Distortion
Consequences of harmonic distortion (2)

• Increased probability of occurrence of resonance.

• Nuisance tripping of thermal protections.

• Electromagnetic interference.

• Increase in the losses.

• Loss of efficiency in electric machines (e.g. 5th harmonic).
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Harmonic distortion

Nuisance tripping of 
protections

Neutral overloading

Capacitor overheating
or destruction

Motor overheating

ASD

Transformer 
overheating

Conductor overheating

Motor

Consequences of harmonic distortion (summary)
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Power Quality characterization
Typical site in USA

Industrial facilities in Portugal 

In both cases, about 90 % 
of PQ events have 
duration below 1 second.
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Power Quality characterization

Source: EPRI

92% of PQ disturbances 

were voltage sags with 

amplitude drops up to 50% 

and duration below 

2 seconds.
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Power Quality costs
Direct costs

• Damage in the equipment

• Loss of production and raw material

• Salary costs during non-productive period

• Restarting costs

Indirect costs

• Inability to accomplish deadlines

• Loss of future orders

Non-material inconvenience

• Inconveniences that cannot be expressed in money, such as not 
listening to the radio or watch TV
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Power Quality costs

• Business Week (1991) - 26,000 million USD per year in the United States

• EPRI (1994) - 400,000 million USD per year in the United States.

• US Department of Energy (1995) - 150,000 million USD per year for 
United States.

• Fortune Magazine (1998) - Around 10,000 million USD per year in United 
States.

• E Source (2001) - 60,000 to 80,000 USD per installation, per year for 
continuous process industries, financial services and food processing in the 
United States.

• European Copper Institute (2001) - 10,000 million EUR per year, in EU in 
industry and commerce.
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Power Quality Costs
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Cost of momentary interruption (1 minute), in $/kW demand

Source: Electrotek Concepts
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Power Quality costs
Costs of interruptions vs. duration

Source: Electrotek Concepts
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Power Quality solutions
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Costs of improving PQ
The lowest cost is to implement item 1 at the design stage.
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Grid Adequacy

Many PQ problems have origin in T&D network.

A proper planned and maintained grid will avoid many PQ problems.

- High level of redundancy;

- Cleaning of insulators;

- Trimming of trees nearby power lines…



University of Coimbra 27

Codes and Standards
Need to regulate:

• the minimum PQ level that utilities have to provide to consumers, and 
• the immunity level that equipment should have.

Most relevant standards:

• CBEMA curve

• ITIC curve

• IEC 61000

• EN 50160:2001

• IEEE standards
- 519-1992 → Harmonics
- 1100-1992 → Powering and grounding sensitive equipment
- 1159-1992 →Monitoring power quality
- 1250-1995 → Service of sensitive equipment
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CBEMA curve
CBEMA – Computer and Business Equipment Manufacturers Association (1978).

Specifies the maximum and minimum limits that sensitive electronic equipment 
should be able to withstand.

Equipment malfunction

Equipment malfunction

Damage on the equipment
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ITIC curve
ITIC – Information Technology Industry Council (1996, revised 2000).

Specifies the maximum and minimum limits that sensitive electronic equipment 
should be able to withstand.
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EN 50160
European Norm created by CENELEC (European Committee for Electrotechnical 
Standardization).

Defines the voltage characteristics of electricity supplied by public distribution 
systems.
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Restoring technologies

Restoring technologies are used to provide the electric loads with ride-
through capability in poor PQ environment.
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Distributed Resources 

Distributed Generation (DG)

• Reciprocating engines

• Microturbines

• Fuel Cells

Energy Storage (restoring technologies)

• Electrochemical batteries

• Flywheels

• Supercapacitors

• SMES

• Compressed air
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Distributed Generation
•Used to provide “clean power” to critical loads, isolating them from disturbances 
with origin in the grid.

• Backup generators to assure energy supply to critical loads during sustained outages. 
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Flywheels
Electromechanical device that couples a rotating electric machine 
(motor/generator) with a rotating mass to store energy for short durations.

Source: http://www.beaconpower.com
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Flywheels
Working Principle

Source: http://www.beaconpower.com
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Supercapacitors

UPS with supercapacitors ESMA
(1 MJoule, 1000 kg)

New technology applied to capacitors

• High power density

• Long life and non-toxic
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Superconducting Magnetic Energy 
Storage (SMES)

Energy is stored in the magnetic field of a coil made of superconductor material.

• High power density

• Very fast response

• Very expensive (on development)
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Compressed Air
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Energy storage technologies comparison
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Constant voltage transformers (CVT)
Use the principles of resonance and core saturation to provide an output voltage 
approximately constant, when the input voltage decreases.

� Simple technology

� Low price

� Low efficiency (80% at full load)

� Can produce harmonics and transients

� Vibration and noise, when resonance 
occurs
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Voltage compensator

Shunt voltage compensator Series voltage compensator
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Passive harmonic filters

� Low price

� Available for high equipment power

� It’s necessary one circuit to filter each 
harmonic

� Ineffective if load conditions are variable

� Increases the probability of resonance 
occurrence
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Active harmonic filters
�Filters several harmonics at the 
same time

� Filtering independent of grid 
topology and load conditions

�Doesn’t increase the risk of 
resonance

� Can be used to compensate 
other PQ disturbances (flicker, 
unbalance)

� Price

� Limited equipment power
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Hybrid harmonic filters
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End-use Devices Less Sensitive

• In most cases, making the end-use devices less sensitive to PQ 
disturbances is more cost effective than buying equipment to mitigate these 
problems.

• Some measures to increase equipment immunity:
– Add a capacitor with larger capacity to power supplies;
– Use cables with larger neutral conductors;
– Derate transformers;
– Use of oversized active front-ends.


