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Power system constraints

 Random external factors
- Weather
- Human activities
- Animals

-Vegetation

* Increasing share of non-linear loads

* Increasing demand for high PQ
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Main PQ problems

* Voltage sags

« Micro-interruptions
* Long interruptions
 Voltage spikes
 Voltage swells
 Voltage fluctuations
 Voltage unbalance

* Noise

» Harmonic distortion
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Voltage Sags

A decrease of the normal voltage level between 10 and 90% of the nominal
rms voltage at the power frequency, for durations of 0,5 cycle to 1 minute.

Instantaneous Value

RMS Value
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Causes:

* Faults on the transmission or distribution
network.

» Faults in consumer’s installation.

 Connection of heavy loads and start-up of
large motors.

Consequences:

» Malfunction of microprocessor-based
control systems (PCs, PLCs, ASDs, etc)
that may lead to a process stoppage.

* Tripping of contactors and
electromechanical relays.

*Disconnection and loss of efficiency in
electric rotating machines.



Micro-Interruptions

Total interruption of electrical supply for duration from few milliseconds
to one or two seconds.

Causes:

* Opening and automatic reclosure of protection devices.

* Insulation failure, lightning and insulator flashover.
Consequences:

*Tripping of protection devices.

* Loss of information and malfunction of data processing equipment.

* Stoppage of sensitive equipment (such as ASDs, PCs, PLCs).
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Long Interruptions

Total interruption of electrical supply for duration greater than 1 to 2

reconds +: ﬂ____/__\_ __________________________
JNMN

* Equipment failure in the power system network.

Causes:

 Storms and objects (trees, cars, etc) striking lines or poles, fire.
* Human error, bad coordination or failure of protection devices.
Consequences:

 Stoppage of all equipment.
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Voltage Spikes

Very fast variation of the voltage value for durations from a several
microseconds to few milliseconds.
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Causes:
* Lightning.

« Switching of lines or power
factor correction capacitors.

* Disconnection of heavy loads.
Consequences:

 Destruction of components
and of insulation materials.

* Data processing errors or data
loss.

* Electromagnetic interference.
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Voltage Swells

Momentary increase of the voltage, at the power frequency, outside the normal
tolerances, with duration of more than one cycle and typically less than a few
seconds.

Causes:
« Start/stop of heavy loads.
* Poorly dimensioned power sources.

* Poorly regulated transformers.

Consequences:

FMS /"\\\\ » Flickering of lighting and screens.

» Damage or stoppage or damage of
sensitive equipment.
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Voltage fluctuation

Oscillation of voltage value, amplitude modulated by a signal with low
frequency.

Causes:
*Arc furnaces.

* Frequent start/stop of electric

l i l i i ‘ motors (for instance elevators).
[ II l I * Oscillating loads.

I
! ! I [ ’ ’ { Consequences:
e Most consequences are common
to undervoltages.

* Flickering of lighting and
screens.
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Voltage Unbalance

A voltage variation in a three-phase system in which the three voltage magnitudes
or the phase-angle differences between them are not equal.

AL, Uy, Ug
>< R Causes:
t
)< \_)& «Large single-phase loads
(induction furnaces, traction loads).

240 - * Incorrect distribution of loads by
the three phases of the system.

135°

Consequences:
O, -
P » The most affected loads are three-
0 0, phase induction machines.

* Increase in the losses.
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Noise

Superimposing of high frequency signals on the waveform of the power-system
frequency.

Causes:
* Electromagnetic interferences.

 Improper grounding may also be
a cause.

Consequences:

» Disturbances on sensitive
electronic equipment.

* May cause data loss and data
processing errors.
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Harmonic Distortion

Voltage or current waveforms assume non-sinusoidal shape.

The waveform corresponds to the sum of different sine-waves with different
magnitude and phase, having frequencies that are multiples of power-system

frequency.
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Harmonic Distortion

Sources of harmonic distortion (1)
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Switched mode power supply
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Harmonic Distortion

Sources of harmonic distortion (2)
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Harmonic Distortion

Consequences of harmonic distortion (1)

 Conductor overheating (skin effect end proximity effect)
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Harmonic Distortion

Consequences of harmonic distortion (2)

* Increased probability of occurrence of resonance.
* Nuisance tripping of thermal protections.

* Electromagnetic interference.

* Increase in the losses.

* Loss of efficiency in electric machines (e.g. 5™ harmonic).
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Harmonic distortion

Consequences of harmonic distortion (summary)

Conductor overheating

Capacitor overheating

or destruction
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Power Quality characterization
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In both cases, about 90 %
of PQ

duration below 1 second.

events have
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Power Quality characterization

Sag &
inferruption
Rate  [*
pr Sila

par year

Source: EPRI

92% of PQ disturbances
were voltage sags with
amplitude drops up to 50%
and duration below

2 seconds.
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Power Quality costs

Direct costs
e Damage in the equipment
* Loss of production and raw material
* Salary costs during non-productive period
 Restarting costs
Indirect costs
* Inability to accomplish deadlines
* Loss of future orders
Non-material inconvenience

* Inconveniences that cannot be expressed in money, such as not
listening to the radio or watch TV
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Power Quality costs

* Business Week (1991) - 26,000 million USD per year in the United States
« EPRI (1994) - 400,000 million USD per year in the United States.

 US Department of Energy (1995) - 150,000 million USD per year for
United States.

* Fortune Magazine (1998) - Around 10,000 million USD per year in United
States.

* E Source (2001) - 60,000 to 80,000 USD per installation, per year for
continuous process industries, financial services and food processing in the
United States.

* European Copper Institute (2001) - 10,000 million EUR per year, in EU 1n
industry and commerce.

*’ University of Coimbra 21



Power Quality Costs

Cost of momentary interruption (1 minute), in $/kW demand

Maximum Minimum
Industrial
Automobile manufacturing 5.0 7.5
Rubber and plastics 3.0 4.5
Textile 2.0 4.0
Paper 1.5 2.5
Printing (newspapers) 1.0 2.0
Petrochemical 3.0 5.0
Metal fabrication 2.0 4.0
Glass 4.0 6.0
Mining 2.0 4.0
Food processing 3.0 5.0
Pharmaceutical 5.0 50.0
Electronics 8.0 12.0
Semiconductor manufacturing 20.0 60.0
Services
Communication, information processing 1.0 10.0
Hospitals, banks, civil services 2.0 3.0
Restaurants, bars, hotels 0.5 1.0
Commercial shops 0.1 0.5

Source: Electrotek Concepts
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Power Quality costs

Costs of interruptions vs. duration
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Power Quality solutions

Power Quality
Events

S

e Power End-
Transmission Distribution Dt Quality Use

Resources ]
Interface Devices

_ 1

Assure Develop Develop Develop S
Grid Advanced Codes Enhanced _
Distributed and Interface Use Devices

Adequacy Resources Standards Devices Less Sensitive

<> Issue [ Solutions
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Costs of improving PQ

The lowest cost is to implement item 1 at the design stage.

'€ Increasing Cost
€ € €

4 - DISCO solutions
3 - Overall protection
inside plant

2 - Controls 1 - Equipment
protection specifications

L]

Other
Leads

Sensitive Process Machine

[F—CDr -
Group of

DISCO Machines
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Grid Adequacy

Many PQ problems have origin in T&D network.

A proper planned and maintained grid will avoid many PQ problems.
- High level of redundancy;
- Cleaning of insulators;

- Trimming of trees nearby power lines...
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Codes and Standards

Need to regulate:
 the minimum PQ level that utilities have to provide to consumers, and

« the immunity level that equipment should have.

Most relevant standards:
« CBEMA curve
 [TIC curve
« [EC 61000
« EN 50160:2001

* [EEE standards
- 519-1992 — Harmonics
- 1100-1992 — Powering and grounding sensitive equipment
- 1159-1992 —Monitoring power quality
- 1250-1995 — Service of sensitive equipment
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CBEMA curve

CBEMA — Computer and Business Equipment Manufacturers Association (1978).

Specifies the maximum and minimum limits that sensitive electronic equipment

should be able
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ITIC curve

ITIC — Information Technology Industry Council (1996, revised 2000).

Specifies the maximum and minimum limits that sensitive electronic equipment
should be able to withstand.
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EN 50160

European Norm created by CENELEC (European Committee for Electrotechnical

Standardization).

Defines the voltage characteristics of electricity supplied by public distribution

systems.

Frequency

Voltage

Voltage Unbalance

Harmonic voltage

“:-n“:‘-“ . . .
WA University of Coimbra

Limits

Must remain between 49.5 (-1%) and 50.5 Hz
(+1%).

The voltage must be between 90% and 110%
of nominal voltage.

The negative sequence cannot assume
magnitude higher than 2% of the direct
sequence.

THD <8 %

V;<5.0%

V. <6.0%

V7 <5.0%

30



Restoring technologies

Restoring technologies are used to provide the electric loads with ride-
through capability in poor PQ environment.

Spikes Frequency Transients
Variations

_

L Resormg | [\
F estoring
E Technologies

Saocs

Interruptions
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Distributed Resources

Distributed Generation (DG) Energy Storage (restoring technologies)
 Reciprocating engines * Electrochemical batteries
* Microturbines * Flywheels
* Fuel Cells * Supercapacitors
 SMES

» Compressed air
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Distributed Generation

*Used to provide “clean power” to critical loads, isolating them from disturbances
with origin in the grid.

« Backup generators to assure energy supply to critical loads during sustained outages.

Reciprocating

Engines Microturbines Fuel Cells

Timing » Ongoing » Emerging now » Mid-2000’s
Market o Standby/backup e Peak-shavingand e Prime power and

utilization PQ PQ

e 300 a 600 $/kW e 750 $/kW » 1000* a 4000

$/kW
o 33-45% efficient e 20-30% efficient e 45-60% efficient
Economics

o <5% utilization e ~20% utilization e >80% utilization

e 15-30 cents/kWh e 10-15 cents/kWh e 5%-15 cents/kWh

* predicted

R

: "’ University of Coimbra 33



Flywheels

Electromechanical device that couples a rotating electric machine
(motor/generator) with a rotating mass to store energy for short durations.

Motor/Generator

Instantaneous conversion
of stored kinetic energy.
Mo data loss or voice
interruption.

Vacuum Enclosure

Eliminates air drag on the
flywheel and component
corrosion issues.

20 year operating life.

Advanced Bearings

Magnetic bearing
arrangement for extremely
efficient flywheel rotation.
Longer system backup.

University of Coimbra

Remotely Monitored

Accurate, real-time information
on key operating parameters
via a computer screen.
Certainty of operation.

Totally Enclosed
“Green” Technology

Contains no fuel or
acid that could harm
the environment.

A green power solution.

Composite Flywheel

Stores energy more cost
effectively than metal flywheels.
Cost effective packaging

for competitive pricing.

Source: http://www.beaconpower.com
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1. The Flywheel Charge Mode:

- AC poweris supplied to the Flywheel
Electronics Module (FEM)

- The FEM powers up the Flywheel to full speed

within a few hours
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Flywheels

Working Principle

A Cabinet
Custamer
Flywheel Load
Electronics
Module (FEM)
~.
LY Flywheel
Eneargy

Storage Unit

2. The Flywheel Float Mode:

- Flywheel maintains full energy and zpeed with
minirmal AC power

- Flywheel stays in this mode until called upon
far power

A Cabinet
Custamer
Flywhesl Load
Electranics
Module (FEM)
| B )
i
[ [
i
Flywheal
- Energy

Storage Unit

3. The Flywheel Discharge Mode:

- AC power iz disrupted

- Flywheel supplies power to the FEM

- The FEM praovides uninterrupted power
to the Custamer Load

-Flywheel zpeed dacreases

Source: http://www.beaconpower.com
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Supercapacitors

New technology applied to capacitors
* High power density

 Long life and non-toxic

L+
=} ELECTRODES

-FELECTROLYTE
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-ELECTRIC
DOUBLE LAYER
COMSTRUCTION
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UPS with supercapacitors ESMA

(1 MJoule, 1000 kg)
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Superconducting Magnetic Energy
Storage (SMES)

Energy is stored in the magnetic field of a coil made of superconductor material.
* High power density
* Very fast response

» Very expensive (on development)
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Compressed Air
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Energy storage technologies comparison
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Constant voltage transformers (CVT)

Use the principles of resonance and core saturation to provide an output voltage
approximately constant, when the input voltage decreases.

Mains Load

—1_ Resonate
—T_capacitor

Ressonate
winding
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Simple technology

Low price

X Low efficiency (80% at full load)
%X Can produce harmonics and transients

X Vibration and noise, when resonance
occurs
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Voltage compensator

Shunt voltage compensator Series voltage compensator

Stored L Stored
g— _ energy is v = energy
Ve e P -
il ;
- s PWM . ", PwMm
Controller Control Controller Control
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Passive harmonic filters

Low price

Available for high equipment power

X Tt’s necessary one circuit to filter each
harmonic

X Ineffective if load conditions are variable

X Increases the probability of resonance
occurrence

42
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Active harmonic filters

Filters several harmonics at the
same time

Filtering independent of grid
topology and load conditions

Doesn’t increase the risk of
resonance

Can be used to compensate
other PQ disturbances (flicker,
unbalance)

¢ Active Filter
Controller

X Price

¥ Limited equipment power
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Hybrid harmonic filters
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End-use Devices Less Sensitive

 In most cases, making the end-use devices less sensitive to PQ
disturbances is more cost effective than buying equipment to mitigate these

problems.

« Some measures to increase equipment immunity:
— Add a capacitor with larger capacity to power supplies;
— Use cables with larger neutral conductors;
— Derate transformers;

— Use of oversized active front-ends.

45
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