Departamento de Matemática Escola Superior de Tecnologia - Instituto Politécnico de Viseu MATEMÁTICA DISCRETA - Eng. de Sistemas e Informática 1^a Frequência - 17/05/2003

Duração: 2h

1. Considere as proposições $\frac{d}{v} = \frac{d}{v} = \frac{d}{$

Traduza as frases seguintes por meio de fórmulas lógicas bem formadas, considerando que o universo de discurso é um certo grupo de pessoas.

- (a) Se é um dia de Verão, é um dia de sol.
- (b) Se é um dia de Verão então todos vão para a praia.
- (c) É um dia de sol e há uma pessoa que não vai para a praia.
- (d) Há dois elementos do grupo que são namorados, mas um deles vai para a praia e o outro vai para a serra.
- (e) Quaisquer dois elementos do grupo que sejam namorados vão ambos para a praia ou ambos para a serra.
- 2. Defina tautologia e averigue se a fórmula bem formada $p \land (q \lor r \lor s) \rightarrow p \lor q \lor \neg r$ é ou não uma tautologia.
- 3. (a) Diga quando é que duas fórmulas bem formadas se dizem logicamente equivalentes.
 - (b) Averigue se $p \land q$ e $\neg (p \rightarrow \neg q)$ são logicamente equivalentes.
 - (c) Apresente uma interpretação que torne a fórmula bem formada $p(x) \wedge \exists y \, q(y) \to \forall x \, p(x)$ falsa.
 - (d) Usando a alínea anterior que pode dizer sobre a afirmação " $p(x) \land \exists y \ q(y) \vdash \forall x \ p(x)$ "?
 - (e) A "demonstração formal" seguinte está errada. Descubra o(s) erro(s):
 - 1. $p(x) \land \exists y \, q(y)$ premissa 2. p(x) 1 e LS 3. $\forall x \, p(x)$ 2 e IU 4. $\exists y \, q(y)$ 1 e LS 5. $\forall x \, p(x) \land \exists y \, q(y)$ 3, 4 e LC
- 4. Dados o conjunto $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$ (onde \emptyset designa o conjunto vazio),
 - (a) indique os cardinais de A, A^3 e 2^A ;
 - (b) determine
 - (i) $A \{\{\emptyset\}\}\$, (ii) $\{x, y\} \times (A \{\{\emptyset\}\})$, (iii) $A \cap \emptyset$, (iv) $A \cap \{\{\emptyset\}\}\}$.
- 5. (a) Mostre que para quaisquer conjuntos $A, B \in C$, se $A \cup B = A \cup C$ então B A = C A.
 - (b) Arranje conjuntos A, B e C tais que $A \cup B = A \cup C$ mas $B \neq C$.
- 6. Considere no universo dos humanos as relações F, B e N definidas por

$$xFy$$
 sse x é filho(a) de y
 xBy sse x é irmã(o) de y
 xNy sse x é neto(a) de y

- (a) Determine qual é a relação de parentesco dada por $F \cdot B$.
- (b) Expresse a relação N em função de F.

7. A relação R definida no conjunto $V=\{a,e,i,o,u\}$ é, relativamente à ordenação alfabética dos seus elementos, representada pela matriz

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

- (a) Escreva R sob a forma de conjunto de pares ordenados.
- (b) Diga, justificando, se R é uma relação de ordem parcial (fraca) e, em caso afirmativo, desenhe o seu diagrama de Hasse.
- (c) Determine a matriz da relação $R \cdot R$.
- 8. (a) Quando é que uma relação é uma função?
 - (b) Quando é que uma função se diz injectiva?
 - (c) Averigue se a função $f:\{-1,\,0,\,1,\,2\}\to\mathbb{N}$ definida por $f(x)=(2x)\mathrm{mod}\,6$ é ou não injectiva.

<u>Cotação</u>: 1. 2. 3. 4. 5. 6. 7. 8. 3. 1,5 5 1,5 2 1,5 3,5 2