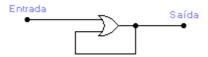
Fundamentos dos circuitos sequenciais

A grande maioria das aplicações dos sistemas digitais requer a capacidade de memória, isto é, a capacidade de armazenar informação digital binária. Por exemplo, um simples sistema de controlo digital para a abertura de uma porta tem necessidade de armazenar o código binário das teclas sucessivamente digitadas num teclado. De facto, a aplicabilidade dos sistemas digitais seria extremamente reduzida se se limitasse à utilização de circuitos combinacionais.


Dispositivo de memória digital binária

Um dispositivo de memória digital binária, também designado por célula de memória, deve permitir:

- a operação de escrita, ou seja, armazenar o valor lógico 0 ou 1 (bit);
- a operação de leitura do valor previamente armazenado, mantendo inalterado esse valor até que uma nova operação de escrita ocorra.


Construção de dispositivos de memória

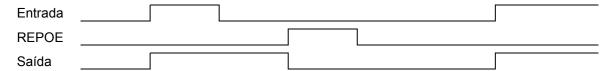
Utilização de mecanismos de armazenamento analógico.

Quando se pretende armazenar um valor lógico, o comutador de entrada é fechado durante o tempo necessário para carregar o condensador à tensão aplicada na entrada (escrita do valor lógico 0 ou 1). O buffer, existente na saída, permite que, quando activo (operação de leitura), a saída reproduza a tensão do condensador sem lhe retirar ou acrescentar carga (isolamento eléctrico). Este é o modo de operação ideal. No entanto, devido a percursos de fuga, o condensador tende a perder carga, sendo, por isso, necessária a actualização periódica da tensão no condensador. Os dispositivos de memória baseados nesta tecnologia têm um circuito interno temporizado responsável pelo "refrescamento", isto é, restabelece a tensão do condensador para os níveis admissíveis na representação dos valores lógicos armazenados. Devido à complexidade destes circuitos, este tipo de tecnologia é preferencialmente utilizado em sistemas de elevada capacidade de armazenamento, tipicamente, a memória principal dos sistemas computacionais.

 Utilização de portas lógicas (circuitos combinacionais) com realimentação de sinais das saídas para as entradas.

Descrição funcional

Supondo que o estado inicial da saída é 0, enquanto a entrada se mantiver a 0, a saída não sofre alteração de estado. A partir do instante em que a entrada passa ao estado 1, a saída transita para o estado 1, mantendo este estado indefinidamente. Este circuito apresenta capacidade de memória pois memoriza a ocorrência do primeiro 1 que seja colocado na entrada.

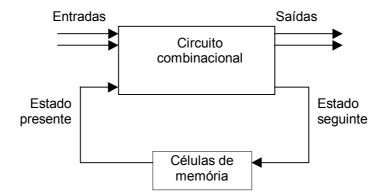

Diagrama temporal

O circuito anterior pode ser alterado de modo a permitir colocar a saída no estado 0. A entrada adicional REPOE, quando activa, permite colocar a saída no estado 0 (excepto se nesse momento a entrada estiver a 1).

Diagrama temporal

Este circuito implementa a função básica de uma célula de memória pois, por um lado, é possível "ler" a saída sem alterar o seu valor e, por outro, permite a operação de escrita de um dos valores lógicos 0 ou 1.

Circuitos sequenciais e circuitos combinacionais


Circuitos combinacionais

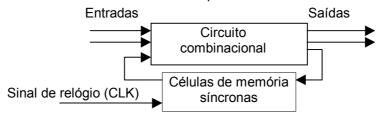
- As saídas dependem apenas do estado presente das entradas.
- Exemplos: portas lógicas, multiplexers, descodificadores, etc.

Circuitos sequenciais

- As saídas dependem, não só do estado actual das entradas, mas também da sequência de estados aplicada nas entradas.
- São constituídos, para além de outros elementos combinacionais, por células de memória que armazenam o estado presente do sistema que define, em conjunto com as entradas, o comportamento futuro das saídas e do próprio estado do sistema.
- Exemplos: básculas, "flip-flops", máquinas de estado, contadores, registos de dados, registos de deslocamento, etc.

Estrutura geral de um circuito sequencial

Circuitos seguenciais assíncronos e síncronos


Circuitos sequenciais assíncronos

A memória (que determina o estado presente de um circuito) é constituída por um conjunto de células de memória assíncronas, isto é, que reagem de imediato a qualquer alteração que se verifique nas entradas.

Circuitos sequenciais síncronos

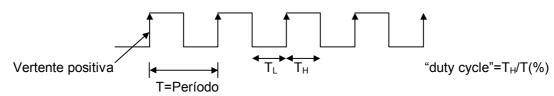
A memória (que determina o estado presente de um circuito) é constituída por um conjunto de células de memória síncronas, isto é, que reagem de forma sincronizado com um sinal, designado por sinal de relógio ("Clock"-CLK), que determina o instante em que se verifica alteração de estado num sistema.

Circuito sequencial síncrono

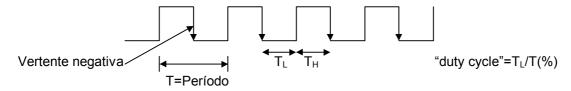
Características do sinal de relógio

Define o instante em que se verifica a alteração de estado num circuito sequencial síncrono.

Período: Intervalo de tempo entre duas transições no mesmo sentido.

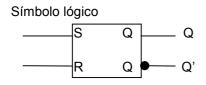

Frequência: inverso do período.

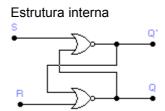
"duty cycle": percentagem de tempo, relativamente ao período, em que o sinal de relógio está activo. Nível de activação:


- Activo ao nível alto as células de memória reagem à vertente positiva do sinal, ou seja, quando se dá a transição do estado baixo para o estado alto.
- Activo ao nível baixo as células de memória reagem à vertente negativa do sinal, ou seja, quando se dá a transição do estado alto para o estado baixo.

Sinal de relógio activo ao nível alto

Frequência=1/T=1/Período

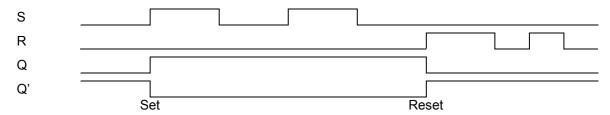

Sinal de relógio activo ao nível baixo

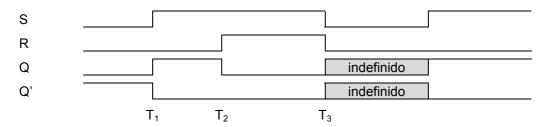


Células de memória assíncronas

Neste tipo de células, qualquer alteração de estado nas entradas provoca, de imediato (a menos do tempo de propagação das portas lógicas), alteração no estado das saídas.

Báscula S-R / "S-R Latch"




Funcionamento básico: A entrada S ("Set") permite colocar a saída Q a 1 e a entrada R("Reset") permite colocar a saída a 0.

Estado presente(N)	Condições de entrada	Estado seguinte(N+1)	Descrição
Q=0, Q'=1	S=0, R=0	Q=0, Q'=1	Mantém-se o estado anterior
Q=1, Q'=0	S=0, R=0	Q=1, Q'=0	Mantém-se o estado anterior
Q=0, Q'=1	S= 0 _ 1 , R=0	Q=1, Q'=0	Coloca a saída a 1 ("Set")
Q=1, Q'=0	S= 0 _ 1 , R=0	Q=1, Q'=0	Coloca a saída a 1 ("Set")
Q=0, Q'=1	S= 0, R=0_ 1	Q=0, Q'=1	Coloca a saída a 0 ("Reset")
Q=1, Q'=0	S= 0, R=0 [1	Q=0, Q'=1	Coloca a saída a 0 ("Reset")

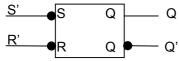
Diagrama temporal

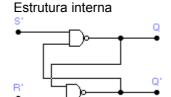
O que acontece quando, simultaneamente, S=1 e R=1 (instante T_2)? Ambas a saídas, Q e Q' estão a 0, o que já de si é incongruente, pois estas saídas devem assumir sempre valores complementares. Mais grave é o facto de ser indefinido o estado da saída se simultaneamente(instante T_3) ambas as entradas são colocadas a 0. Devido a este comportamento indeterminado, as entradas S e R nunca devem estar activas simultaneamente.

Tabela funcional

S	R	Q_{N+1}	•
0	0	Q_N	•
0	1	0	Reset
1	0	1	Set
1	1	Indefinido	

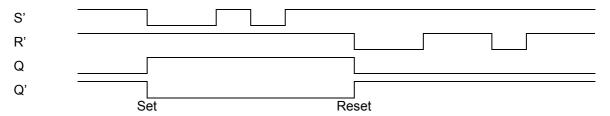
Na tabela funcional, Q_N representa o estado presente e Q_{N+1} representa o estado seguinte.


Tabela de excitação


$Q_N \Rightarrow Q_{N+1}$	S	R
0⇒0	0	Χ
0⇒1	1	0
1⇒0	0	1
1⇒1	Χ	0

A tabela de excitação define quais os valores a aplicar nas entradas S e R para que determinada transição de estado ocorra na saída (X = condição indiferente).

Báscula S'-R'/ "S'-R' Latch"



Funcionamento básico: O funcionamento é em tudo idêntico à báscula S-R, mas apresenta as entradas activas a 0. A entrada S' ("Set") permite colocar a saída Q a 1 e a entrada R' ("Reset") permite colocar a saída a 0.

Estado presente(N)	Condições de entrada	Estado seguinte(N+1)	Descrição
Q=0, Q'=1	S'=1, R'=1	Q=0, Q'=1	Mantém-se o estado anterior
Q=1, Q'=0	S'=1, R'=1	Q=1, Q'=0	Mantém-se o estado anterior
Q=0, Q'=1	S'= 1 <u>]</u> 0 , R'=1	Q=1, Q'=0	Coloca a saída a 1 ("Set")
Q=1, Q'=0	S'= 1 <u></u> 0 , R'=1	Q=1, Q'=0	Coloca a saída a 1 ("Set")
Q=0, Q'=1	S'= 1, R'=1 <u>0</u>	Q=0, Q'=1	Coloca a saída a 0 ("Reset")
Q=1, Q'=0	S'= 1, R'=1]_0	Q=0, Q'=1	Coloca a saída a 0 ("Reset")

Diagrama temporal

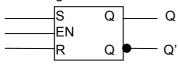
Tal como acontece com a báscula S-R, as duas entradas S' e R' nunca devem estar simultaneamente activas, ou seja, S'=R'=0.

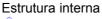
Tabela funcional

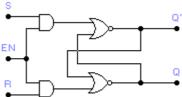
S'	R'	Q_{N+1}	
0	0	Indefinido	
0	1	1	Set
1	0	0	Reset
1	1	Q_N	

Na tabela funcional, Q_N representa o estado presente e Q_{N+1} representa o estado seguinte.

Tabela de excitação

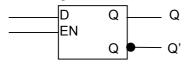

agao			
$Q_N \Rightarrow Q_{N+1}$	ŝ	Ř	
0⇒0	1	Χ	
0⇒1	0	1	
1⇒0	1	0	
1⇒1	Χ	1	


A tabela de excitação define quais os valores a aplicar nas entradas S' e R' para que determinada transição de estado ocorra na saída (X = condição indiferente).

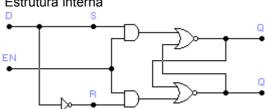

Báscula S-R porteada/ "S-R Latch with enable"

De acordo com a tabela funcional de uma báscula S-R, as entradas a 0 não afectam as saídas. Assim sendo, é possível controlar a sensibilidade da báscula através de uma entrada adicional de "enable" (EN).

Funcionamento básico: O funcionamento é em tudo idêntico à báscula S-R, mas esta só é sensível a alterações nas entradas apenas enquanto a entrada de enable estiver activa (EN=1).


Tabela funcional

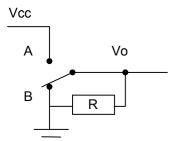
ΕN	S	R	Q_{N+1}	
1	0	0	Q_N	
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	Indefinido	
0	Χ	Χ	Q_N	_


Báscula D / "D Latch – transparent latch"

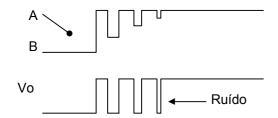
Este tipo de célula de memória assíncrona tem por base uma báscula S-R porteada, cujas entradas estão ligadas a uma única entrada D. Quando a entrada de enable está activa, a saída reflecte, de forma transparente, a informação binária colocada na entrada D.

Símbolo lógico

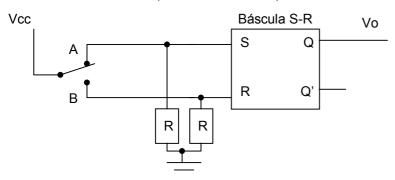
Estrutura interna


Tabela funcional

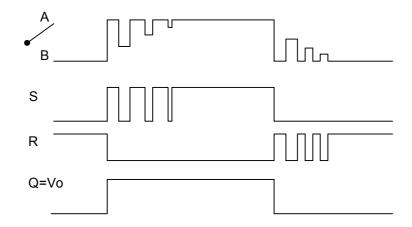
EN	D	Q
1	0	0
1	1	1
0	Χ	Q_N


Exemplo de aplicação de uma báscula S-R

Um exemplo de aplicação deste circuito é a filtragem do ruído introduzido pelo comutadores mecânicos.


♦ Comutador com ruído

A função da resistência R do circuito é colocar a saída Vo a 0 (valor lógico) sempre que o comutador não efectua o contacto nem com o ponto A nem com o ponto B. Devido ao efeito de mola dos comutadores mecânicos, a transição do comutador de B para A produz ruído na saída Vo, conforme se pode verificar no diagrama temporal.



♦ Comutador sem ruído ("debounced switch")

As resistências do circuito colocam as entradas S e R a 0 (valor lógico) sempre que o comutador não efectua o contacto nem com o ponto A nem com o ponto B. Quando o comutador está em contacto com o ponto B, S=0 e R=1, estando a saída Vo=Q a 0. Na transição do comutador de B para A, R=0 e S vai oscilando entre 1 e 0 até se fixar no valor 1. A primeira ocorrência de S=1 é de imediato capturada pela báscula S-R colocando a saída a 1 (Set). Na transição de A para B, S=0 e R vai oscilando entre 1 e 0 até se fixar no valor 1. A primeira ocorrência de R=1 é de imediato capturada pela báscula S-R, colocando a saída a 0(Reset). Tal como se evidencia no diagrama temporal, a aplicação da báscula S-R neste circuito elimina o ruído eléctrico.

Diagrama temporal

