
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

MODELING WITH EXTEND

Dave Krahl

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119 U.S.A.

in
to
e a
to

, it
tion
ed

he
eas
ABSTRACT

This document presents an overview of the Exte
modeling environment. Extend is a general-purpo
graphically-oriented, discrete event and continuo
simulation application with an integrated authorin
environment and development system. Examples
applications will illustrate the product’s broad appea
Specific features will be demonstrated by examining
simple model of a single server, single queue system
which detail and enhancements will be added.

1 INTRODUCTION

In the last few years, there has been a convergence in
simulation industry. Simulation languages have beco
easier to use, often adding a user interface layer simila
that traditionally found in simulators. Simulators hav
added functionality to the point where their power an
flexibility rival that of traditional languages. Because o
this, it has become difficult for someone to determine t
advantages of one product over the others based strictly
a feature comparison.

In this confusing marketplace Extend stands out a
product whose basic design provides a combination
unparalleled ease of use, power, and extensibility. It ex
as:

• A stand-alone simulation tool which can be
used to create complex discrete event and
continuous models without programming.

• A simulation authoring package where
model interfaces can be easily created,
without programming, to enhance
productivity and ease of use.

• A development environment for building
customized models of unique types of
systems. The programming environment
allows the modeler to create a simulator for a
specific industry.
 to

18
nd
se,
us
g
of
l.

 a
 to

 the
me
r to
e
d
f

he
 on

s a
of

ists

2 WHAT MAKES EXTEND UNIQUE

Extend provides features and capabilities not found
other simulation software. This allows the modeler
concentrate on the modeling process and quickly produc
model that is easy to manipulate and communicate
others. These features include:

• Graphical logic making the model easier to
understand and communicate.

• An unparalleled level of interactivity. Model
parameters can be changed and results
viewed during simulation execution. This is
done through the graphical user interface;
there is no need to enter a debugging mode or
type in cryptic debugging commands.

• Superior hierarchy. Extend’s hierarchy allows
for animation and reuse, and can be any
number of levels deep. This gives modelers
an excellent tool for organizing large models
and reusing model segments in other models.

• An innovative discrete event architecture
which makes model building more intuitive.

• Graphical model building for discrete event,
continuous, and combined models. Extend is
usable across an organization’s entire range
of process simulation applications.

3 APPLICATIONS

Since Extend is a general purpose simulation program
has been applied in a wide range of areas. The applica
examples here include supply chain, high spe
manufacturing, and chemical processing.

3.1 Supply Chain

The U.S. Marine Corps is undergoing a revolution in t
way they conduct combat operations. There are many id
regarding how the tactical supply chain must change
8

Krahl

ility

an
t
to
for
ial
ese
f

ft

d

ld
end

d
or a
ine
tus

a
as
ess
eet
e
s.
e
"
em.
ith
ket

,"
provide the necessary logistical support. The TLoaDS mo
has been developed to explore the ability of existin
evolutionary, or revolutionary methods and equipment
this challenging mission. This application (Figure 1) h
been described as “warehouses that move”, referring to
changing location of supply ships and depots.

Figure 1: Supply Chain Model

3.2 High Speed Processing

This model of a packaging line takes bulk material (cookie
in pounds, packages the material in bags, packages bags
cartons, and then cartons into cases. The model is use
understand the dynamics and capacity of the overall syst
This model (Figure 2) shows the effect of changing t
speed of a piece of equipment, the failure and repair rates
that piece of equipment, the size of in-line storage, and e
the mixing of different products.

Figure 2: High Speed Processing

This application was built using Simulation Dynamics
“Industry” product that utilizes the Extend simulatio
engine.
18
del
g,

for
as
 the

s)
 into
d to
em.
he
 for
ven

’
n

3.3 Pulp and Paper Processing

The model represents an integrated pulp and paper fac
in New Zealand's central North Island.

The model is a steady-state representation of
integrated pulp mill, recycle facility and sack kraf
machine. It allows the engineers to perform “what ifs”
determine the optimum mix of products and grades
specific economic conditions. It is also capable of mater
and energy balances. Without a tool such as a model, th
types of highly flexible operations, with hundreds o
permutations and combinations, are difficult to optimize.

This mill now boasts bleached softwood kra
production costs in the bottom quartile worldwide.

This application was built in H. A. Simons IDEAS
simulation software which is based on the Exten
simulation engine.

Figure 3: Pulp and Paper Processing

4 EXTEND’S MODELING ENVIRONMENT

Before looking into how Extend can be used to bui
models such as these, it is helpful to understand the Ext
modeling environment.

Extend models are constructed with library-base
iconic blocks. Each block describes a step in a process
calculation. The dialogs associated with each block def
the behavior of the block as well as report on block sta
and results.

Blocks reside in libraries. Each library represents
grouping of blocks with similar characteristics such
Discrete Event, Plotters, Electronics, or Business Proc
Reengineering. Blocks are placed on the model worksh
by dragging them from the library window onto th
worksheet. The flow is then established between the block

There are two types of logical flows between th
Extend blocks. The first type of flow is that of “items,
which represent the objects that move through the syst
Items can have attributes and priorities associated w
them. Examples of items include parts, patients, or a pac
of information. The second type of logical flow is “values
9

Modeling with Extend

l
f

o

a
s

st,
w
n

l
h
rs
e
e

sic
pon
two
 Set
ar
r 1
as
nd
e”.
ue
that
om
ay
which will change over time during the simulation ru
Values represent a single number. Examples of va
include the number of items in queue, the result o
random sample, and the level of fluid in a tank.

Each block has connectors that are the interface po
of the block. Figure 4 shows the connector symbols for
value and item connectors.

Item InputValue Input

Value Output Item Output

Figure 4: Value and Item Connectors

Connections are lines used to specify the logical fl
from one connector to another. Double lines represent i
connections and single lines represent value connection

5 CAR WASH EXAMPLE

The following example is of a single server, single que
system. For the purpose of illustration, the model of a
wash will include one wash bay and one waiting line. T
model for this car wash is shown in Figure 5.

Figure 5: A Single Server Single Queue Model

The block on the far left is a Generator block a
periodically creates items (in this case dirty car
Following this is a Queue, FIFO block that holds the c
until requested by the next block. The Activity Delay ha
limited capacity of one processing unit and delays the
for a fixed amount of time. This block represents the wa
bay. The last block in the model is an Exit block th
removes the cars from the system.

5.1 Random Processing Time

Suppose that the processing time for the wash bay is
represented by a specific random distribution. This can
modeled by connecting the output of an Input Rand
Number block to the delay connector (labeled "D") on t
Activity Delay block as in Figure 6. Every time a ca
enters the wash bay, a new processing time is reque
19
n.
ues
 a

ints
the

w
tem
s.

ue
car
he

nd
s).
rs
 a
car
sh
at

best
 be
om
he
r
sted

from the Input Random Number block. For each reque
the Input Random Number block generates a ne
processing time from the specific random distributio
defined in the block’s dialog.

Figure 6: A Model with Random Process Times

5.2 Graphical Output

A Discrete Event Plotter graphically displays mode
metrics. In this example (Figure 7), the Plotter will grap
the contents of the Queue, or the number of dirty ca
waiting in line, over time. To accomplish this, connect th
Queue’s length value output connector (labeled "L") to th
input connector of the Discrete Event Plotter as follows:

Figure 7: Discrete Event Plotter Added to Model

5.3 Attributes

Assume that the car wash offers two types of washes, ba
and deluxe, and that the processing time is dependent u
the type of wash requested. To differentiate between the
different types of wash requests, attributes are used. The
Attribute Block adds an attribute called “type” to each c
and randomly sets the value of this attribute to 0 (basic) o
(deluxe) using another Input Random Number Block,
shown in Figure 8. As the dirty cars leave the queue a
enter the wash bay, the Get Attribute block reads the “typ
A Conversion Table block converts this number to a val
representing the mean processing time for washes of
type. The mean value can then be fed into the Input Rand
Number Block that is already connected to the del
connector of the Activity Delay (Figure 8).
0

)
by
be
he
e
y

e
a
f
.
r

e

e
,
g

Kr

Figure 8: Setting "Type" Attribute

5.4 Resources

When the dirty cars are ready to be washed, they are dr
through the wash by one of the car wash attendants.
attendants are modeled as resources by adding a Reso
Pool block. Within this block the number of attendants a
specified. The Queue, FIFO block is replaced with t
Queue, Resource Pool block. Within the Queue, Resou
Pool Block the type and number of resources requir
before the item may be released to the next block
specified. Therefore, dirty cars will enter the Queu
Resource Pool block and wait until an attendant
available. If an attendant is available and the wash
accept another car, the number of attendants in
Resource Pool block is decremented by one and the ca
allowed to proceed into the wash bay. Upon exiting t
wash bay, the attendant is no longer needed and may
released back to the Resource Pool with the Rele
Resource block as shown in Figure 9.

Figure 9: Modeling Resources

5.5 Activity Based Costing

Now that there is a basic model of the car wash, the mo
can be enhanced to calculate the average cost of was
each car. The following information is available:

• Attendants are paid $8.50 an hour.
• Cars use $1.25 in soap
• Electricity and water used by the wash bay

cost $1.50 per minute.

The cost of the attendant is defined within th
Resource Pool block and the cost of the soap, water
electricity in the Activity Delay block (Figure 10). As the
model is run, the accumulated cost of each vehicle
automatically calculated and stored in an attribute. T
Cost By Item Block can be added to read the cost attribu
19
ahl

iven
The
urce
re
he
rce
ed
are
e,
is

can
the
r is

he
 be
ase

del
hing

e
and

 is
he
te,

sort the items by an attribute (such as the “type” attribute
and report on the throughput, total cost and average cost
type of wash requested. The Cost Stats Block can also
added to report the total cost generated in each of t
blocks, for example the total cost generated by th
attendants (Resource Pool) or the wash bay (Activit
Delay).

Figure 10: Cost Tab of Activity Delay Block

5.6 Interprocess Communication

The term interprocess communication (IPC) describes th
act of two applications communicating and sharing dat
with one another. This feature allows the integration o
external data and applications into Extend models
Automatic communication between Extend and othe
applications can take one of three forms:

• “Paste-Link” where the information is
automatically updated between Extend and
Excel.

• Blocks which utilize the IPC functions to
communicate directly with other applications.
The Extend IPC library is an example of this
which allows models to send data to, get data
from, and execute macros within Excel
spreadsheets.

• Imbedded objects (ActiveX or OLE). These
retain their native user interface, but reside
with the Extend model worksheet or blocks.
All of the features and interface of the
imbedded application are directly available
within Extend.

5.7 Model Results

Once the simulation run is complete, the results of th
simulation are reported within the blocks. Double clicking
on each block reveals the information collected from th
simulation run. For example, double clicking on the Queue
Resource Pool block (Figure 11)opens a dialog showin
the following information about the state of that block:
1

Modeling with Extend

 o
bo

ed
 t

ba
m

ers

ot
lys

g
ia
d

 to
ci
itiv
irt
te

y
g
the
d.
nd
n
h

n
e

ze

nd

d
o
s,
he

er
a
el
e

ilt

l
ort

ol
,
e
 a
n

g
y
e

all
 In
he
r
e
ss
s
s
s

Figure 11: Dialog of Queue Resource Pool

The Plotter block (Figure 12) shows the number
items stored in the Queue, Resource Pool over time in
graphical and tabular format:

Figure 12: Plot of Queue Length

Simulation results may be stored in a table, plott
cloned to a different area of the worksheet, exported
another program such as a spreadsheet or data
displayed in an animation, or even used to control so
aspect of the outside world through external device driv

5.8 Data Analysis

Extend offers a number of methods for analyzing b
input and output data. These range from internal ana
features to built-in interfaces with other applications.

An interface is provided to distribution-fittin
programs that aid users in selecting the appropr
statistical distributions based on empirical data collecte
the field.

In addition, sensitivity analysis can be performed
determine how sensitive a system is to changes in spe
input parameters. For example: to determine how sens
the car wash is to changes in the inter-arrival time of d
cars, sensitivity analysis can be performed on the in
192
f
th

,
o
se,
e
.

h
is

te
in

fic
e

y
r-

arrival mean parameter of the Generator Block. B
selecting the inter-arrival time dialog item and choosin
Sensitize Parameter from the Edit menu, the change in
parameter value from one run to the next is define
Simulation parameters such as the number of runs a
simulation end time can be specified in the Simulatio
Setup dialog item under the Run menu. By cycling throug
different inter-arrival times for the dirty cars and
comparing the results from the different runs, a
understanding of how sensitive the car wash is to th
arrival rate of dirty cars can be obtained.

The Statistics library helps users to collect and analy
output data. Blocks from the Statistics library
automatically gather data from the appropriate blocks a
calculate confidence intervals.

6 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical an
interactive nature of Extend. However, Extend can als
take the shape of the modeled system. Interface
components, and graphics can be used which tailor t
model to a specific application area.

The most visible aspect of a custom model is the us
interface. By modifying an existing interface or creating
new one, the simulation modeler is able to create a mod
which can be exercised by someone more familiar with th
system than with the simulation tool. Models can be bu
that fit naturally into the conceptual framework of the
person using the model. The following sections wil
describe some of the tools provided in Extend that supp
customization.

6.1 Animation

Animation is a powerful presentation and debugging to
that can greatly increase model clarity. In Extend
animation icons moving from block to block represent th
flow of items through the system. Users can choose from
number of icons provided with Extend or create their ow
in an external drawing package.

For example, adding animation to see cars travelin
from block to block in the car wash model is done b
selecting the appropriate icon in the Animate tab of th
Generator block. From here, the picture representing
of the items created by the Generator can be defined.
addition, any block that the items pass through has t
capability of changing the item’s animation icon. Fo
example every item exiting the Generator block can b
represented with a picture of a dirty car. As the items pa
through the wash bay, the Activity Delay block change
each item’s animation picture to a clean car, thu
providing visual cues of how the items are changing a
they progress through the model.

rahl

la
nd

o
 an
nd
n

 b
w

os

ca
ca
th
he
 o
ta

 t
on
.
 th

ke
 o
h
th
be
g
er
ca
e o
th
pl
be
ica

ers
he

d to
re
g
n
d

ce
lts,

ith
to
are
by
 a
r
 to
a
the
w
n a
l.
 an
te

’s
rs
K

In addition, custom animation can be added to disp
pictures and text, level indicators, pixel maps, a
QuickTime movies.

An interface also exists to Wolverine Software’s Pro
Animation package. Activities, Resources, Generators,
Exit blocks each have specific functionality to se
information to the Proof animation during simulatio
execution. Additional animation features in Proof can
accessed through the Proof library of blocks. This allo
Extend modelers to easily utilize the industry’s m
sophisticated animation package.

6.2 Hierarchical Modeling

Hierarchy allows models to be subdivided into logi
components or sub-models. A single descriptive icon
represent each sub-model. Double clicking on
hierarchical block will open a new window displaying t
sub-model. This can greatly simplify the representation
a model and allow the user to hide and show model de
as appropriate for the target audience.

In the car wash model (Figure 9), as detail was added
number of blocks increased. As a result, the representati
the model became slightly encumbered with model details

Using hierarchy, the model can be represented by
system’s most basic elements:

• the arrival of dirty cars
• the queue of dirty cars waiting for availability

of the wash bay
• the wash bay
• the departure of clean cars

By selecting a group of blocks and choosing Ma
Selection Hierarchical from the Model menu, a section
the model is encapsulated within a hierarchical block. T
block can be saved to a library to be used again in o
models. The icon for the hierarchical block can
modified by using the built-in icon editor or by importin
an existing picture. The number of hierarchical lay
allowed in Extend is unlimited. Figure 13 shows the
wash model with hierarchical blocks representing som
the basic elements of the car wash. While
representation of the model is more intuitive and sim
than Figure 9, all of the detail of the model can still
accessed by double clicking on any of the hierarch
blocks to display the underlying sub-model.

Figure 13: Car Wash Model with Hierarchical Blocks
e

193
y

f
d

e
s
t

l
n

e

f
ils

he
 of

e

f
is
er

s
r
f

e
e

l

6.3 Dialog Cloning and the Notebook

As noted in the previous section, input and output paramet
associated with the model can be found in the dialogs of t
appropriate blocks. While this provides an intuitive
association between system metrics and the constructs use
model them, it can make searching for specific data mo
difficult. This can be especially cumbersome when workin
with large models containing many layers of hierarchy. A
effective way of dealing with this is to use the notebook an
cloning feature. With the notebook, a single custom interfa
can be created that consolidates critical parameters, resu
and model control to a central location.

The notebook is a separate window associated w
each model. Initially the notebook is a blank worksheet
which text, pictures, and clones can be added. Clones
direct links to dialog parameters and can be created
selecting the Cloning Tool from the tool bar and dragging
dialog parameter from a block dialog to the notebook o
model worksheet. Once a clone is created, any changes
the clone are immediately reflected in the block and vis
versa. Therefore it is no longer necessary to access
block’s dialog to change an input parameter or vie
updated results. Creative use of the notebook can result i
simple yet effective interface for a large, complex mode
Figure 14 shows the notebook for the car wash model as
illustration of how the notebook can be used to consolida
important parameters into one location.

Figure 14: Notebook for Car Wash Model

6.4 Block Development

The block development environment is one of Extend
most powerful features. While the majority of Extend use
find the pre-built constructs sufficient for their needs, th

Modeling with Extend

ers
l o

 th
By
xt
an
ck

 to
es

iar
 in
ed

 o

rs
ic
ve

ing
ms
nd

ion

s
ing
Fo
ee
ee
le-
e
ow
 o
te
ls.

ing
o
he
 to
el o
de

h
C)

ons
he
he

ows
er
n to
lock
ueue
he
 an

ell
dels
”
is

. In
 the

the
block development environment provides a way for us
to expand the modeling capabilities to perform unusua
highly specialized tasks.

Extend’s open source architecture allows access to
structure of any block that is shipped with Extend.
opening the structure of a block, its icon, dialog, help te
and programming code can be edited. The interface
functionality of any block can be modified or a new blo
created from scratch.

ModL is the powerful and flexible language used
define the behavior of the block. This language provid
high-level functions and features while having a famil
look and feel for users with experience programming
C. In addition, external XCMDs and DLLs can be call
from within ModL giving the option of programming in
any language which supports this feature (such as C
Pascal).

This level of extensibility has prompted many use
to develop libraries of custom blocks for specif
industries. Users and third-party developers ha
created libraries for modeling many systems includ
neural networks, control systems, high-speed syste
chemical processes, silicon wafer fabrication, pulp a
paper mills, and radio and microwave communicat
systems.

6.5 Scripting

Since Extend was created from the ground up a
graphical simulation tool, much of the process of defin
a model was originally dependent on user interaction.
example, the user places blocks on the model worksh
connects blocks together by drawing a connection betw
the two, and defines the block’s behavior by doub
clicking the block to open its dialog and filling th
appropriate parameters. Scripting is a feature that all
models to be created and/or modified through a suite
ModL functions. With this functionality, users can crea
objects that can automatically build and modify mode
With scripting, users can develop their own model build
“wizards” or self-modifying models. Without having t
rely on general-purpose “wizards” provided by t
software vendor, users can develop “wizards” specific
their needs and can have complete control over the lev
detail and accuracy resulting from automated mo
building.

Coupled with Extend’s ability to communicate wit
other applications using interprocess communication (IP
scripting provides an easy way to allow other applicati
to control every aspect of Extend including building t
model, importing/exporting data, and running t
simulation.
194
r

e

,
d

r

,

a

r
t,
n

s
f

f
l

,

7 DISCRETE EVENT ARCHITECTURE

Extend utilizes a message based architecture which all
for more natural model building than is possible in oth
simulation tools. Messages are used to pass informatio
connected blocks about the state and actions of the b
sending the messages. For example, as soon as a q
receives an item it will send a “wants” message to t
downstream blocks to see if any of them can accept
item. The messaging system is applied to the item as w
as the value connectors. Because of this, complex mo
and logic can be built without resorting to “dummy
resources, “logical” workstations, or programming that
specific to a given model.

7.1 Modeling Enhancements

A more advanced architecture makes modeling easier
using a modern, message-based system Extend allows
modeler to focus on the modeling task rather than
simulation tool.

• Complex model segments can be built from
simple, elemental blocks. These can then be
saved in a library for use in other models.
This type of model construction eliminates
the need for “kitchen sink” modeling
components in which every possible
permutation must be programmed by the
developer (making the interface
unnecessarily complex) or requiring
programming to enhance the capabilities of
the modeling component.

• Easier rescheduling of events. Because
blocks, not items (entities), are entered into
the event calendar, changing an event time
is a simple assignment. In other simulation
tools, the event calendar must be searched
for a specific item before the change can be
made.

• Events do not have to be item based.
Blocks can post themselves on the event
calendar even if they do not handle items.
This reduces the overhead in the model
because items do not have to be generated
or processed when an event occurs.

• Blocking through decisions. Extend
automatically determines which path an item
takes before it arrives at the decision point.
The alternative to this would be adding
“dummy” resources to prevent the item from
moving forward if space was not available.

hl

a

d
g

.

d
d

te

s
s

Kra

• Queues can be separated from activities. Any
number of blocks which do not hold items
(passing blocks) can be between a queue and
the next activity.

• Conditions do not need to be “time checked”.
Messages are sent to connected blocks
whenever a condition changes and the
condition is evaluated immediately.

• Model logic is represented graphically and is
visible as part of the model structure.

8 SUMMARY

As demonstrated above, Extend’s design provides
superior simulation environment. By incorporating an
intuitive interface and extensive authoring and
development environment, along with more advance
simulation technology, Extend has succeeded in definin
its position as the leader in simulation software.

REFERENCES

Hamber, Robert. 1999, CloaDS & TloaDS, 1999
Simulation Solutions Conference. Institute of
Industrial Engineers, Norcross, GA

Imagine That, Inc. 1998. Extend Software Manual. San
Jose, CA.

Rivera, Jim. 1998. Modeling with Extend, 1998 Winter
Simulation Conference Proceedings, ed. D. J
Medeiros, E. F. Johnson, J. S. Carson, M. S
Manivannan, 257-262. IEEE, Piscataway, NJ.

Wolverine Software Corporation. 1995. Using Proof
Animation. Annandale, VA.

AUTHOR BIOGRAPHY

DAVID KRAHL , a simulation engineer with Imagine
That, Inc., is responsible for block development an
technical support. He received an MS in Project an
Systems Management in 1996 from Golden Ga
University and a BS in Industrial Engineering from the
Rochester Institute of Technology in 1986. Mr. Krahl ha
worked extensively with a range of simulation program
and is actively involved in the simulation community.
195

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

